Simulation of Low-Pressure Inductively Coupled Plasma with Displacement Potential and Gas Flow
- Авторлар: Shemakhin A.Y.1
- 
							Мекемелер: 
							- Kazan (Volga Region) Federal University
 
- Шығарылым: Том 50, № 1 (2024)
- Беттер: 74-86
- Бөлім: PLASMA DIAGNOSTICS
- URL: https://ruspoj.com/0367-2921/article/view/668827
- DOI: https://doi.org/10.31857/S0367292124010074
- EDN: https://elibrary.ru/SJVJCE
- ID: 668827
Дәйексөз келтіру
Аннотация
The dependence of the parameters of low-pressure inductively coupled argon plasma (13.3–113 Pa) and field frequency of 13.5٦ MHz at the coil on the potential applied to the electrode and on gas flow rate up to 4000 sccm is numerically studied. The model is developed in the COMSOL Multiphysics environment and verified with experimental data, as well as over the Knudsen number. As a result of a numerical experiment, it is revealed as follows: when the displacement potential increases linearly, the density of charged particles increases exponentially and a slight increase in the electron temperature is observed; when the gas flow rate increases linearly, the density of charged particles increases exponentially, the density of excited states has an extremum at 2000 sccm, and the gas and electron temperature increases linearly.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
A. Shemakhin
Kazan (Volga Region) Federal University
							Хат алмасуға жауапты Автор.
							Email: shemakhin@gmail.com
				                					                																			                												                	Ресей, 							Kazan						
Әдебиет тізімі
- Абдуллин И., Желтухин Б., Катанов Н. Высокочастотная плазменно-струйная обработка материалов при пониженных давлениях: Теория и практика применения. 2000.
- Ventzek P.L., Sommerer T.J., Hoekstra R.J., Kushner M.J. // Appl. Phys. Lett. 1993. V. 63. P. 605.
- Li H., Xu T., Chen J., Zhou H., Liu H. // Appl. Surface Sci. 2004. V. 227. P. 364.
- Kosku N., Murakami H., Higashi S., Miyazaki S. // Appl. Surface Sci. 2005. V. 244. P. 39.
- Wen D.-Q., Liu W., Gao F., Lieberman M., Wang Y.-N. // Plasma Sources Sci. Technol. 2016. V. 25. P. 045009.
- Kim K.-Y., Kim K.-H., Moon J.-H., Chung C.-W. // Phys. Plasmas. 2020. V. 27. P. 093504.
- Yue H., Jian S., Zeyu H., Zhang G., Chunsheng R. // Plasma Sci. Technol. 2017. V. 20. P. 014005.
- Tinck S., Boullart W., Bogaerts A. // J. Phys. D: Applied Phys. 2008. V. 41. P. 065207. Zhang Y.-R., Zhao Z.-Z., Xue C., Gao F., Wang Y.-N. // J. Phys. D: Applied Phys. 2019. V. 52. P. 295204.
- Reed T.B. // J. Appl. Phys. 1961. V. 32. P. 821.
- Mostaghimi J., Proulx P., Boulos M.I. // Numerical Heat Transfer. 1985. V. 8. P. 187.
- Romig M.F. Steady State Solutions of the Radiofrequency Discharge with Flow // The Physics of Fluids. 1960. V. 3. № 1. C. 129–133.
- Racka-Szmidt K., Stonio B., Zelazko J., Filipiak M., Sochacki M. // Materials. 2021. V. 15. P. 123.
- Zheng Y., Ye H., Liu J., Wei J., Chen L., Li C. // Materials Lett. 2019. V. 253. P. 276.
- Kumabe T., Ando Y., Watanabe H., Deki M., Tanaka A., Nitta S., Honda Y., Amano H. // Japanese J. Appl. Phys. 2021. V. 60. SBBD03.
- Dineen M., Loveday M., Goodyear A., Cooke M., Newton A., Baclet S., Ward C., Hemakumara T. // Advanced Etch Technology for Nanopatterning IX. V. 11329. SPIE. 2020. P. 54.
- Fairushin I.I., Shemakhin A.Y. // High Energy Chemistry. 2023. V. 57. No. 41.
- Jucius D., Grigaliunas V., Juodenas M., Guobiene A., Lazauskas A. // Optical Materials. 2023. V. 136. P. 113437.
- Nozaki M., Terashima D., Yoshigoe A., Hosoi T., Shimura T., Watanabe H. //Japanese J. Appl. Phys. 2020. V. 59. SMMA07.
- Puranto P., Hamdana G., Pohlenz F., Langfahl-Klabes J., Daul L., Li Z., Wasisto H. S., Peiner E., Brand U. // J. Phys.: Confer. Ser. V. 1319. IOP Publishing. 2019. P. 012008.
- Yamada S., Takeda K., Toguchi M., Sakurai H., Nakamura T., Suda J., Kachi T., Sato T. // Appl. Phys. Express. 2020. V. 13. P. 106505.
- Sugaya T., Yoon D., Yamazaki H., Nakanishi K., Sekiguchi T., Shoji S. // J. Microelectromechanical Systems. 2019. V. 29. P. 62.
- Seok B., Kim S., Jun D., Jang J. // Electronics Lett. 2019. V. 55. P. 660.
- Shemakhin A.Y., Zheltukhin V., Khubatkhuzin A. // J. Phys.: Confer. Ser. V. 774. IOP Publishing. 2016. P. 012167.
- Shemakhin A.Y., Zheltukhin V. // Mathematica Montisnigri. 2017. V. 39. P. 126.
- Terentev T., Shemakhin A.Y., Samsonova E., Zheltukhin V. // Plasma Sources Sci. Technol. 2022. V. 31. P. 094005.
- Zheltukhin V., Terentev T., Shemakhin A., Samsonova E. // J. Phys.: Confer. Ser. V. 1870. IOP Publishing. 2021. P. 012018.
- Zheltukhin V.S., Shemakhin A.Y., Terentev T.N., Samsonova E.S. // Mesh Methods for Boundary-Value Problems and Applications: 13th International Conference, Kazan, Russia, October 20–25, 2020. Springer. 2021. P. 587.
- Zheltukhin V., Shemakhin A.Y. // Mathematical models and computer simulations. 2014. V. 6. P. 101.
- Lindner H., Murtazin A., Groh S., Niemax K., Bogaerts A. // Analytical chemistry. 2011. V. 83. P. 9260.
- Bernardi D., Colombo V., Ghedini E., Mentrelli A. // Pure and applied chemistry. 2005. V. 77. P. 359.
- Ferreira C., Loureiro J., Ricard A. // J. Appl. Phys. 1985. V. 57. P. 82.
- Гинзбург В.Л. Распространение электромагнитных волн в плазме. Наука, 1967.
- Шемахин А.Ю. // Химия высоких энергий. 2021. T. 58. С. 61.
- PHELPS database. http://www.lxcat.laplace.univ-tlse.fr, June 4, 2013.
- COMSOL AB. Stockholm. Sweden. COMSOL Multiphysics License No. 9602172. Ver. 5.6. htttp://www.comsol.com
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді










