NONLINEAR DYNAMICS OF LINEARLY UNSTABLE n = 0 ELECTROSTATIC PERTURBATIONS IN CONVENTIONAL TOKAMAK PLASMAS
- 作者: Sorokina E.A1
-
隶属关系:
- National Research Centre "Kurchatov Institute"
- 期: 卷 51, 编号 6 (2025)
- 页面: 591-611
- 栏目: TOKAMAKS
- URL: https://ruspoj.com/0367-2921/article/view/692864
- DOI: https://doi.org/10.31857/S0367292125060022
- ID: 692864
如何引用文章
详细
The nonlinear dynamics of axisymmetric radially localized oscillations of the electric potential in a tokamak with stationary toroidal plasma rotation is investigated. In the linear approximation, these oscillations split into two independent branches: geodesic acoustic modes (GAMs) and low-frequency zonal flows (ZFs). The stability of the latter is determined by the specifics of plasma equilibrium, and the frequency/growth rate – by the velocity of stationary rotation. It is shown that the nonlinear dynamics of the electric potential and the associated fluctuations of pressure, density, and longitudinal plasma velocity within the MHD model has integrals of motion. The evolution of the electric potential and hydrodynamic plasma characteristics is calculated for different velocities of stationary plasma rotation and for different initial values of the electric field perturbations. The regime, which initial stage corresponds to linearly unstable ZF, is studied in detail. It is shown that at the nonlinear stage, the fluctuations of electric potential reach amplitude-limited oscillations of both low frequency and GAM. The resulting oscillation spectrum exhibits GAM frequency splitting and intermittency.
作者简介
E. Sorokina
National Research Centre "Kurchatov Institute"
Email: Sorokina_EA@nrcki.ru
Moscow, Russia
参考
- Conway G.D., Smolyakov A.I., Ido T. // Nucl. Fusion. 2022. V. 62. P. 013001. https://doi.org/10.1088/1741-4326/ac0dd1
- Diamond P.H., Itoh S.-I., Itoh K., Hahm T.S. // Plasma Phys. Control. Fusion. 2005. V. 47. P. R35. https://doi.org/10.1088/0741-3335/47/5/R01
- Winsor N., Johnson J.L., Dawson J.M. // Phys. Fluids. 1968. V. 11. P. 2448. https://doi.org/10.1063/1.1691835
- Wang S. // Phys. Rev. Lett. 2006. V. 97. P. 085002. https://doi.org/10.1103/PhysRevLett.97.085002; Wang S. // Phys. Rev. Lett. 2006. V. 97. P. 129902 (erratum). https://doi.org/10.1103/PhysRevLett.97.129902
- Wahlberg C. // Phys. Rev. Lett. 2008. V. 101. P. 115003. https://doi.org/10.1103/PhysRevLett.101.115003
- Lakhin V.P., Ilgisonis V.I., Smolyakov A.I. // Phys. Lett. A. 2010. V. 374. P. 4872. https://doi.org/10.1016/j.physleta.2010.10.012
- Hamerli E. // Phys. Fluids. 1983. V. 26. P. 230. https://doi.org/10.1063/1.864012
- Tasso H., Throumoulopoulos G.N. // Phys. Plasmas. 1998. V. 5. P. 2378. https://doi.org/10.1063/1.872912
- Ильгисонис В.И., Поздняков Ю.Н. // Физика плазмы. 2002. Т. 28. С. 99. https://doi.org/10.1134/1.1450672
- Haverkort J.W., de Blank H.J., Koren B. // J. Comput. Phys. 2012. V. 231. P. 981. https://doi.org/10.1016/j.jcp.2011.03.016
- Melnikov A.V., Vershkov V.A., Eliseev L.G., Grashin S.A., Gudozhnik A.V., Krupnik L.I., Lysenko S.E., Mavrin V.A., Perfilov S.V., Shelukhin D.A., Soldatov S.V., Ufimtsev M.V., Urzabaev A.O., Oost G.V., Zimeleva L.G. // Plasma Phys. Control. Fusion. 2005. V. 48. P. S87. https://doi.org/10.1088/0741-3335/48/4/S07
- Мельников А.В., Вершков В.А., Грашин С.А., Драбинский М.А., Елисеев Л.Г., Земцов И.А., Крутин В.А., Лахин В.П., Лысенко С.Е., Немец А.Р., Нуреалев М.Р., Харчев Н.К., Кабанов Ф.О., Шевчугин Д.А. // Письма ЖЭТФ. 2022. Т. 115. С. 360. https://doi.org/10.31857/S1234567822060040
- Сорокина Е.А. // Письма ЖЭТФ. 2024. Т. 120. С. 667. https://doi.org/10.31857/S0370274224110039
- Галеев А.А., Сагдеев Р.З. // Основы физики плазмы. Т. 1 / Под ред. А.А. Галеева и Р. Судана. М.: Энергоатомиздат, 1983. С. 590.
- Ramisch M., Stroth U., Niedner S., Scott B. // New J. Phys. 2003. V. 5. P. 12. https://doi.org/10.1088/1367-2630/5/1/312
- Sasaki M., Itoh K., Nagashima Y., Ejiri A., Takase Y. // Phys. Plasmas. 2009. V. 16. P. 022306. https://doi.org/10.1063/1.3076933
- Qiu Z., Chen L., Zonca F., Chen W. // Nucl. Fusion. 2019. V. 16. P. 066031. https://doi.org/10.1088/1741-4326/ab1285
- Ren H., Xu X.Q. // Phys. Plasmas. 2020. V. 27. P. 034501. https://doi.org/10.1063/1.5126872
- Palermo F., Conway G.D., Poli E., Roach C.M. // Nucl. Fusion. 2023. V. 63. P. 066010. https://doi.org/10.1088/1741-4326/acc816
- Conway G.D., Scott B., Schirmer J., Reich M., Kendl A. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2005. V. 47. P. 1165. https://doi.org/10.1088/0741-3335/47/8/003
- Conway G.D., Tröster C., Scott B., Hallatschek K. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2008. V. 50. P. 055009. https://doi.org/10.1088/0741-3335/50/5/055009
- Cheng J., Yan L.W., Zhao K.J., Dong J.Q., Hong W.Y., Qian J., Yang Q.W., Ding X.T., Duan X.R., Liu Y. // Nucl. Fusion. 2009. V. 49. P. 085030. https://doi.org/10.1088/0029-5515/49/8/085030
- Hillesheim J.C., Peebles W.A., Carter T.A., Schmitz L., Rhodes T.L. // Phys. Plasmas. 2012. V. 19. P. 022301. https://doi.org/10.1063/1.3678210
- Yashin Y.M., Bulanin V.V., Gusev V.K., Khromov N.A., Kurskiev G.S., Minaev V.B., Patrov M.I., Petrov A.V., Petrov Yu.V., Prisyazhnyuk D.V., Sakharov N.V., Shchegolev P.B., Tolstyakov S.Y., Yafodomcev V.I., Wagner F. // Nucl. Fusion. 2014. V. 54. P. 114015. https://doi.org/10.1088/0029-5515/54/11/114015
- Melnikov A.V., Eliseev L.G., Perfilov S.V., Lysenko S.E., Shurygin R.V., Zenin V.N., Grashin S.A., Krupnik L.I., Kozachek A.S., Solomatin R.Yu., Eifirov A.G., Smolyakov A.I., Ufimtsev M.V. and The HIBP Team // Nucl. Fusion. 2015. V. 55. P. 063001. https://doi.org/10.1088/0029-5515/55/6/063001
- Hassam A.B., Antonsen T.M., Drake J.F., Liu C.S. // Phys. Rev. Lett. 1991. V. 66. P. 309. https://doi.org/10.1103/PhysRevLett.66.309
- Лахин В.П., Сорокина Е.А., Ильгисонис В.Н., Коновальцева Л.В. // Физика плазмы. 2015. Т. 41. С. 1054. https://doi.org/10.1134/S1063780X15120077
- Ilgisonis V.I., Lakhin V.P., Marusov N.A., Smolyakov A.I., Sorokina E.A. // Nucl. Fusion. 2022. V. 62. P. 066002. https://doi.org/10.1088/1741-4326/ac3f4c
- Кадомцев Б.Б. // Коллективные явления в плазме. М.: Наука, 1988.
- Fu G.Y. // J. Plasma Phys. 2011. V. 77. P. 457. https://doi.org/10.1017/S0022377810000619
- Nagashima Y., Itoh K., Itoh S.-I., Fujisawa A., Yagi M., Hoshino K., Shinohara K., Ejiri A., Takase Y., Ido T., Uehara K., Miura Y. and the JFT-2M group // Plasma Phys. Control. Fusion. 2007. V. 49. P. 16111. https://doi.org/10.1088/0741-3335/49/10/002
- Lin D.J., Heidbrink W.W., Crocker N.A., Du X.D., Nazikian R., Van Zeeland M.A., Barada K. // Nucl. Fusion. 2022. V. 62. P. 112010. https://doi.org/10.1088/1741-4326/ac8be3
- Ильгисонис В.И., Коновальцева Л.В., Лахин В.П., Сорокина Е.А. // Физика плазмы. 2014. Т. 40. С. 955. https://doi.org/10.1134/S1063780X14110038
补充文件
