Investigation of the biexciton radiative cascade in a single InAs/GaAs quantum dot embedded in a high-Q microcavity
- Authors: Serov Y.M., Galimov A.I., Toropov A.A.
- Issue: Vol 87, No 6 (2023)
- Pages: 885-891
- Section: Articles
- URL: https://ruspoj.com/0367-6765/article/view/654390
- DOI: https://doi.org/10.31857/S0367676523701533
- EDN: https://elibrary.ru/VMZVID
- ID: 654390
Cite item
Abstract
A biexciton radiative cascade was recorded in the photoluminescence spectra of an InAs/GaAs QD embedded in a λ-cavity with a relatively high-quality factor of 4600, formed in a micropillar with GaAs/AlGaAs distributed Bragg reflectors. The spectrum and kinetics of the radiation, measured under conditions of two-photon excitation, demonstrated a significant effect of the microcavity on the emission process. A possible improvement based on this effect in the generation of entangled photon pairs is discussed.
About the authors
Yu. M. Serov
							Author for correspondence.
							Email: serovjurij@mail.ru
				                					                																			                												                														
A. I. Galimov
							Author for correspondence.
							Email: serovjurij@mail.ru
				                					                																			                												                														
A. A. Toropov
							Author for correspondence.
							Email: serovjurij@mail.ru
				                					                																			                												                														
References
- Tomm N., Javadi A., Antoniadis N.O. et al. // Nature Nanotech. 2001. V. 16. No. 4. P. 399.
- Ding X., He Y., Duan Z. et al. // Phys. Rev. Lett. 2016. V. 116. No. 2. Art. No. 020401.
- Wang H., He Y.M., Chung T.H. et al. // Nature. Photon. 2019. V. 13. No. 11. P. 770.
- Prevedel R., Aspelmeyer M., Brukner C. // JOSA B. 2007. V. 24. No. 2. P. 241.
- Young R.J., Stevenson R.M., Shields A.J. // J. Appl. Phys. V. 101. No. 8. Art. No. 081711.
- Zeuner K.D., Jons K.D., Schweickert L. // ACS Photonics. 2021. V. 8. No. 8. P. 2337.
- Wang H., Hu H., Chung T.H. et al. // Phys. Rev. Lett. 2019. V. 122. No. 11. Art. No. 113602.
- Dousse A., Suffczyński J., Beveratos A. et al. // Nature. 2010. V. 466. No. 7303. P. 217.
- Schumacher S., Förstner J., Zrenner A. et al. // Opt. Express. 2012. V. 20. No. 5. P. 5335.
- Heinze D., Zrenner A., Schumacher S. // Phys. Rev. B. 2017. V. 95. No. 24. Art. No. 245306.
- Галимов А.И., Рахлин М.В., Климко Г.В. и др. // Письма в ЖЭТФ. 2021. Т. 113. № 4. С. 248; Galimov A.I., Rakhlin M.V., Klimko G.V. et al. // JETP Lett. 2021. V. 113. No. 4. P. 252.
- Müller M., Bounouar S., Jöns K.D. et al. // Nature Photonics. 2014. V. 8. No. 3. P. 224.
- Bayer M., Ortner G., Stern O. et al. // Phys. Rev. B. 2002. V. 65. No. 19. Art. No. 195315.
- Sęk G., Krizhanovskii D.N., Kulakovskii V.D. et al. // Acta Phys. Polon. 2016. V. 129. No. 1-A. Art. No. A-44.
- Ollivier H., Maillette de Buy Wenniger I., Thomas S. et al. // ACS Photonics. 2020. V. 7. No. 4. P. 1050.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



