Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride
- 作者: Mazannikova M.A.1,2,3, Korotin D.M.1,2, Anisimov V.I.1,2,3, Oganov A.R.2, Novoselov D.Y.1,2,3
- 
							隶属关系: 
							- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
- Department of Theoretical Physics and Applied Mathematics, Ural Federal University
 
- 期: 卷 118, 编号 9-10 (11) (2023)
- 页面: 664-670
- 栏目: Articles
- URL: https://ruspoj.com/0370-274X/article/view/664224
- DOI: https://doi.org/10.31857/S1234567823210061
- EDN: https://elibrary.ru/PQWJID
- ID: 664224
如何引用文章
详细
We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca2N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers.
作者简介
M. Mazannikova
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology;Department of Theoretical Physics and Applied Mathematics, Ural Federal University
														Email: mazannikova@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia;121205, Moscow, Russia;620002, Yekaterinburg, Russia						
Dm. Korotin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology
														Email: mazannikova@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia;121205, Moscow, Russia						
V. Anisimov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology;Department of Theoretical Physics and Applied Mathematics, Ural Federal University
														Email: mazannikova@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia;121205, Moscow, Russia;620002, Yekaterinburg, Russia						
A. Oganov
Skolkovo Institute of Science and Technology
														Email: mazannikova@imp.uran.ru
				                					                																			                												                								121205, Moscow, Russia						
D. Novoselov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences;Skolkovo Institute of Science and Technology;Department of Theoretical Physics and Applied Mathematics, Ural Federal University
							编辑信件的主要联系方式.
							Email: mazannikova@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia;121205, Moscow, Russia;620002, Yekaterinburg, Russia						
参考
- P. P. Edwards, Science 333, 49 (2011).
- Q. Zhu, T. Frolov, and K. Choudhary, Matter 1, 1293 (2019).
- D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, V. I. Anisimov, JETP Lett. 109, 387 (2019).
- D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, and V. I. Anisimov, J. Phys.: Condens. Matter 32, 445501 (2020).
- D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, V. I. Anisimov, and A. R. Oganov, J. Phys. Chem. C 125, 15724 (2021).
- D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, Phys. Rev. B 103, 235126 (2021).
- H. Hosono and M. Kitano, Chem. Rev. 121, 3121 (2021).
- Z. Wan, W. Xu, T. Yang, and R. Zhang, Phys. Rev. B 106, L060506 (2022).
- S. Liu, C. Wang, H. Jeon, Y. Jia, and J. H. Cho, Phys. Rev. B 105, L220401 (2022).
- Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, and T. Cui, Phys. Rev. Lett. 127, 157002 (2021).
- A. Fujimori, Nat. Mater. 21, 1217 (2022).
- M. A. Mazannikova, D. M. Korotin, A. O. Shorikov, V. I. Anisimov, and D. Y. Novoselov, J. Phys. Chem. C 127, 8714 (2023).
- K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, Nature 494, 336 (2013).
- X. Zhang and G. Yang, Phys. Chem. Lett. 11, 3841 (2020).
- J. Li, S. Inagi, T. Fuchigami, H. Hosono, and S. Ito, Electrochem.Commun. 44, 45 (2014).
- T. Kocabas, A. Ozden, I. Demiroglu, D. C¸ akır, and C. Sevik, J. Phys. Chem. Lett. 9, 4267 (2018).
- B. Sa, R. Xiong, C. Wen, Y. L. Li, P. Lin, Q. Lin, and Z. Sun, J. Phys. Chem. C 124, 7683 (2020).
- D. Liu and D. Tomanek, Nano Lett. 19, 1359 (2019).
- H. Tang, B. Wan, B. Gao, Muraba et al. (Collaboration), Adv. Sci. 5, 1800666 (2018).
- D. Y. Novoselov, M. A. Mazannikova, D. M. Korotin, A. O. Shorikov, M. A. Korotin, V. I. Anisimov, and A. R. Oganov, J. Phys. Chem. Lett. 13, 7155 (2022).
- I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).
- G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, Comput. Phys.Commun. 185, 422 (2014).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. B 77, 3865 (1996).
- P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), Phys. Condens. Matter. 21, 395502 (2009).
- A. A. Mosto, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys.Commun. 185, 2309 (2014).
- R. F. Bader, Chem. Rev. 91, 893 (1991).
- A. Otero-de-la-Roza, E. R. Johnson, and V. Luan˜a, Comp. Phys.Comm. 185, 1007 (2014).
- A. Savin, R. Nesper, S. Wengert, and T. F. F¨assler, Angew Chem.Int. Ed. Engl. 36, 1808 (1997).
- Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, and V. Prakapenka, Nature 458, 182 (2009).
- T. Matsuoka and K. Shimizu, Nature 458, 186 (2009).
- T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, J. Phys. Soc. Jpn. 74, 2391 (2005).
- N. W. Ashcroft, Nature 458, 158 (2009).
- S. Kasap, Thermoelectric e ects in metals: thermocouples, Department of Electrical Engineering University of Saskatchewan, Canada (2001).
- D. M. Rowe, CRC handbook of thermoelectrics: macro to nano, RC, Boca Raton, FL. (2006).
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					