Construction of Polynomial Eigenfunctions of a Second-Order Linear Differential Equation
- Authors: Kruglov V.E.1
- 
							Affiliations: 
							- Odesa I.I. Mechnykov National University, Odesa, 65082, Ukraine
 
- Issue: Vol 59, No 9 (2023)
- Pages: 1172-1180
- Section: Articles
- URL: https://ruspoj.com/0374-0641/article/view/649472
- DOI: https://doi.org/10.31857/S0374064123090029
- EDN: https://elibrary.ru/WONVOB
- ID: 649472
Cite item
Abstract
A system of third-order recurrence relations for the coefficients of polynomial eigenfunctions (PEFs) of a differential equation is solved. A recurrence relation for three consecutive PEFs and a formula for differentiating PEFs are obtained. We consider differential equations one of which generalizes the Hermite and Laguerre differential equations and the other is a generalization of the Jacobi differential equation. For these equations, we construct functions bringing them to self-adjoint form and find conditions under which these functions become weight functions. Examples are given where the PEFs for nonweight functions do not have real zeros.
About the authors
V. E. Kruglov
Odesa I.I. Mechnykov National University, Odesa, 65082, Ukraine
							Author for correspondence.
							Email: viktorkruglov935@gmail.com
				                					                																			                												                								Одесса, Украина						
References
- Круглов В.Е. Построение полиномиальных решений одного линейного дифференциального уравнения второго порядка // Дифференц. уравнения. 2008. Т. 44. № 7. С. 999-1001.
- Айнс Э. Обыкновенные дифференциальные уравнения. М., 1939.
- Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М., 1971.
- Никифоров А.Ф., Уваров В.Е. Специальные функции математической физики. М., 1984.
- Сегё Г. Ортогональные многочлены. М., 1962.
- Суетин П.К. Классические ортогональные многочлены. М., 1973.
- Круглов В.Е. Построение фундаментальной системы решений линейного разностного уравнения конечного порядка // Укр. мат. журн. 2009. Т. 61. № 6. С. 777-794.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					