Regioselective C(7)–H arylation of 2-(het)aryl [1,2,4]triazolo[1,5-a]pyrimidines by aryl halides under ruthenium catalysis
- Authors: Shepelenko K.E.1, Gnatiuk I.G.1, Chernyshev V.M.1
- 
							Affiliations: 
							- Platov South-Russian State Polytechnic University (NPI)
 
- Issue: Vol 60, No 7 (2024)
- Pages: 858-867
- Section: Articles
- URL: https://ruspoj.com/0514-7492/article/view/676684
- DOI: https://doi.org/10.31857/S0514749224070052
- EDN: https://elibrary.ru/RBMNOQ
- ID: 676684
Cite item
Abstract
An unusual selectiviry of C-H arylation reactions of 2-(hetero)aryl[1,2,4]triazolo[1,5-a]pyrimidines with (hetero)aryl halides catalyzed by Ru(II) complexes was revealed. The reaction proceeds with activation of the C(7)-H bond rather than the α-C-H bond of the (hetero)aryl substituent at position 2 of the triazolopyrimidine. Arylation of 2-substituted [1,2,4]triazolo[1,5-a]pyrimidines with (hetero)aryl bromides afforded a series of 7-(hetero)arylated products in good yields.
Full Text
 
												
	                        About the authors
K. E. Shepelenko
Platov South-Russian State Polytechnic University (NPI)
							Author for correspondence.
							Email: kon1990@bk.ru
				                	ORCID iD: 0000-0002-7281-5095
				                																			                												                	Russian Federation, 							Prosveschenya 132, 346428 Novocherkassk						
I. G. Gnatiuk
Platov South-Russian State Polytechnic University (NPI)
														Email: kon1990@bk.ru
				                	ORCID iD: 0009-0003-8772-6372
				                																			                												                	Russian Federation, 							Prosveschenya 132, 346428 Novocherkassk						
V. M. Chernyshev
Platov South-Russian State Polytechnic University (NPI)
														Email: chern13@yandex.ru
				                	ORCID iD: 0000-0001-9182-8564
				                																			                												                	Russian Federation, 							Prosveschenya 132, 346428 Novocherkassk						
References
- Oukoloff K., Lucero B., Francisco K.R., Brunden K.R., Ballatore C. Eur. J. Med. Chem. 2019, 165, 332–346. doi: 10.1016/j.ejmech.2019.01.027
- Merugu S.R., Cherukupalli S., Karpoormath R., Chem. Biodivers. 2022, 19, e202200291. doi: 10.1002/cbdv.202200291
- Huo J.-L., Wang S., Yuan X.-H., Yu B., Zhao W., Liu H.-M., Eur. J. Med. Chem. 2021, 211, 113108. doi: 10.1016/j.ejmech.2020.113108
- Wang H., Lee M., Peng Z., Blázquez B., Lastochkin E., Kumarasiri M., Bouley R., Chang M., Mobashery S., J. Med. Chem. 2015, 58, 4194–4203. doi: 10.1021/jm501831g
- Yang F., Yu L.-Z., Diao P.-C., Jian X.-E., Zhou M.-F., Jiang C.-S., You W.-W., Ma W.-F., Zhao P.-L., Bioorg. Chem. 2019, 92, 103260. doi: 10.1016/j.bioorg.2019.103260
- El-Gendy M.M.A., Shaaban M., Shaaban K.A., El-Bondkly A.M., Laatsch H., J. Antibiot. 2008, 61, 149–157. 10. doi: 10.1038/ja.2008.124
- Pismataro M.C., Felicetti T., Bertagnin C., Nizi M.G., Bonomini A., Barreca M.L., Cecchetti V., Jochmans D., De Jonghe S., Neyts J., Loregian A., Tabarrini O., Massari S., Eur. J. Med. Chem. 2021, 221, 113494. 12. doi: 10.1016/j.ejmech.2021.113494
- Desantis J., Massari S., Corona A., Astolfi A., Sabatini S., Manfroni G., Palazzotti D., Cecchetti V., Pannecouque C., Tramontano E., Tabarrini O., Molecules 2020, 25, 1183. 14. doi: 10.3390/molecules25051183
- Brigance R.P., Meng W., Fura A., Harrity T., Wang A., Zahler R., Kirby M. S., Hamann L. G., Bioorg. Med. Chem. Lett. 2010, 20, 4395–4398. 16. doi: 10.1016/j.bmcl.2010.06.063
- Pinheiro S., Pinheiro E.M.C., Muri E.M.F., Pessôa J.C., Cadorini M.A., Greco S., J. Med. Chem. Res. 2020, 29, 1751–1776. doi: 10.1007/s00044-020-02609-1
- Hu M., Liu X., Dong F., Xu J., Li S., Xu H., Zheng Y., Food Chem. 2015, 175, 395–400. 20. doi: 10.1016/j.foodchem.2014.11.158
- Zhu X., Zhang M., Liu J., Ge J., Yang G., J. Agric. Food. Chem. 2015, 63, 3377–3386. doi: 10.1021/acs.jafc.5b00228
- Tétard-Jones C., Edwards R., Pest. Manage. Sci. 2016, 72, 203–209. 24. doi: 10.1002/ps.4147
- Wu J., Cheng Y., Lan J., Wu D., Qian S., Yan L., He Z., Li X., Wang K., Zou B., You J., J. Am. Chem. Soc. 2016, 138, 12803–12812. doi: 10.1021/jacs.6b03890
- Su R., Zhao Y., Yang F., Duan L., Lan J., Bin Z., You J., Sci. Bull. 2021, 66, 441–448. doi: 10.1016/j.scib.2020.08.023
- Salas J.M., Angustias Romero M., Purificación Sánchez M., Quirós M., Coord. Chem. Rev. 1999, 193, 1119–1142. doi: 10.1016/S0010-8545(99)00004-1
- Łakomska I., Fandzloch M., Coord. Chem. Rev. 2016, 327–328, 221–241. doi: 10.1016/j.ccr.2016.04.014
- Pyatakov D.A., Sokolov A.N., Astakhov A.V., Chernenko A.Y., Fakhrutdinov A.N., Rybakov V.B., Chernyshev V.V., Chernyshev V.M., J. Org. Chem. 2015, 80, 10694–10709. doi: 10.1021/acs.joc.5b01908
- Zhang M., Cheng R., Lan J., Zhang H., Yan L., Pu X., Huang Z., Wu D., You J., Org. Lett. 2019, 21, 4058–4062. doi: 10.1021/acs.orglett.9b01238
- Wencel-Delord J., Glorius F., Nat. Chem. 2013, 5, p. 369–375. doi: 10.1038/nchem.1607.
- Guillemard L., Kaplaneris N., Ackermann L., Johansson M. J., Nat. Rev. Chem. 2021, 5, 522–545. doi: 10.1038/s41570-021-00300-6
- Josephitis C.M., Nguyen H.M.H., McNally A., Chem. Rev. 2023, 123, 7655–7691. doi: 10.1021/acs.chemrev.2c00881
- Fischer G., Chapter One – Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. In Advances in Heterocyclic Chemistry; Academic Press, 2019, 128, 1–101. doi: 10.1016/bs.aihch.2018.10.002
- Kaushik P., Kumar R., Khokhar S., Dhiman S., Kamal R., ChemistrySelect 2023, 8, e202301534. doi: 10.1002/slct.202301534
- Khazipov O.V., Shepelenko K.E., Pasyukov D.V., Chesnokov V.V., Soliev S.B., Chernyshev V.M., Ananikov V.P., Org. Chem. Front. 2021, 8, 2515–2524. doi: 10.1039/D1QO00309G
- Rasputin N.A., Demina N.S., Irgashev R.A., Rusinov G.L., Chupakhin O.N., Charushin V.N., Tetrahedron 2017, 73, 5500–5508. doi: 10.1016/j.tet.2017.07.042
- Rasputin N.A., Demina N.S., Irgashev R.A., Shchepochkin A.V., Rusinov G.L., Chupakhin O.N., Charushin V.N., ARKIVOC 2020, 2020, 330–343. doi: 10.24820/ark.5550190.p011.247
- Balkenhohl M., Jangra H., Makarov I. S., Yang S.-M., Zipse H., Knochel P., Angew. Chem. Int. Ed. 2020, 59, 4992–14999. doi: 10.1002/anie.202005372
- Nguyen T.V.Q., Poli L., Garrison A.T., Chem. Commun. 2022, 58, 827–830. doi: 10.1039/D1CC06337E
- Cheng Y., Wu Y., Tan G., You J., Angew. Chem. Int. Ed. 2016, 55, 12275–12279. 57. doi: 10.1002/anie.201606529
- Tan G., He S., Huang X., Liao X., Cheng Y., You J., Angew. Chem. Int. Ed. 2016, 55, 10414–10418. 59. doi: 10.1002/anie.201604580
- Nguyen T.V.Q., Chem. Eur. J. 2023, 29, e202301485. doi: 10.1002/chem.202301485
- Singh K.S., Catalysts 2019, 9, 173. doi: 10.3390/catal9020173
- Arockiam P.B., Bruneau C., Dixneuf P.H., Chem. Rev. 2012, 112, 5879–5918. 64. doi: 10.1021/cr300153j
- Simonetti M., Cannas D.M., Just-Baringo X., Vitorica-Yrezabal I.J., Larrosa I., Nat. Chem. 2018, 10, 724–731. doi: 10.1038/s41557-018-0062-3
- Ackermann L., Vicente R., Potukuchi H.K., Pirovano V., Org. Lett. 2010, 12, 5032–5035. doi: 10.1021/ol102187e
- Zha G.-F., Qin H.-L., Kantchev E.A.B., RSC Adv. 2016, 6, 30875–30885. doi: 10.1039/c6ra02742c
- Murali K., Machado L.A., Carvalho R.L., Pedrosa L.F., Mukherjee R., Da Silva Júnior E.N., Maiti D., Chem. Eur. J. 2021, 27, 12453–12508. doi: 10.1002/chem.202101004
- Shepelenko K.E., Nikolaeva K.A., Gnatiuk I.G., Garanzha O.G., Alexandrov A.A., Minyaev M.E., Chernyshev V.M., Mendeleev Commun. 2022, 32, 485–487. doi: 10.1016/j.mencom.2022.07.018
- Ackermann L., Chem. Rev. 2011, 111, 1315–1345. doi: 10.1021/cr100412j
- Dolzhenko A.V., Pastorin G., Dolzhenko A. V., Chui W. K., Tetrahedron Lett. 2009, 50, 2124–2128. 78. doi: 10.1016/j.tetlet.2009.02.172
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted


