Simulation of silicon conical field effect GAA nanotransistors with stack SiO2/HfO2 dielectric of gate
- 作者: Masalsky N.V.1
-
隶属关系:
- Federal Research Center Scientific Research Institute for System Research, Russian Academy of Sciences Academy
- 期: 卷 53, 编号 3 (2024)
- 页面: 222-231
- 栏目: МОДЕЛИРОВАНИЕ
- URL: https://ruspoj.com/0544-1269/article/view/655223
- DOI: https://doi.org/10.31857/S0544126924030044
- ID: 655223
如何引用文章
详细
The issues of modeling the electrophysical characteristics of a silicon conical field effect GAA nanotransistor are discussed. An analytical model of the drain current of a transistor with a fully enclosing conical gate with a stack sub-gate oxide SiO2/HfO2 has been developed, taking into account the effect of the charge of the interphase trap at the Si/SiO2 interface. To simulate the potential distribution in a conical working area under the condition of constant trap density, an analytical solution of the Poisson equation was obtained using the method of parabolic approximation in a cylindrical coordinate system with appropriate boundary conditions. The potential model was used to develop an expression for the GAA drain current of a nanotransistor with a stack gate oxide. The key electrophysical characteristics are numerically investigated depending on the density of traps and the thicknesses of SiO2 and HfO2 layers.
全文:

作者简介
N. Masalsky
Federal Research Center Scientific Research Institute for System Research, Russian Academy of Sciences Academy
编辑信件的主要联系方式.
Email: volkov@niisi.ras.ru
俄罗斯联邦, Moscow
参考
- Usha C., Vimala P. Analytical drain current model for fully depleted surrounding gate TFET // J. Nano Res. 2018. V. 55. P. 75—81. https://doi.org/10.4028/www.scientific.net/JNanoR.55.75
- Nanoelectronics: Devices, Circuits and Systems. Editor by Brajesh Kumar Kaushik. Elsevier. 476, 2018. ISBN: 9780128133545.
- Tomar G., Barwari A. Fundamental of Electronic Devices and Circuits. Springer. 2019. ISBN: 9789811502668. 224 p.
- Colinge J.P. FinFETs and Other Multi-Gate Transistor. Springer-Verlag. New York 2008. ISBN: 9780387717517. 339 р.
- Ferain I., Colinge C.A., Colinge J. Multigate transistors as the future of classical metal—oxide—semiconductor field-effect transistors // Nature. 2011. V. 479. P. 310—316. https://doi.org/10.1038/nature10676
- International Technology Roadmap for Semiconductors (ITRS) Interconnect, 2020 Edition. [Online] Available: https://irds.ieee.org/editions/2020 (Accessed on December 12, 2022).
- Kumar S., Goel E., Singh K., Singh B., Kumar M., Jit S. A compact 2D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure // IEEE Trans. Electron Devices. 2016. V. 63. P. 3291—3330. https://doi.org/10.1109/TED.2016.2572610
- Masalsky N.V. Modeling silicon sylindrical CMOS nanotransistors with a fully enclosed variable-radius gate // Russian Microelectronics. 2022. V. 51. P. 220—225. https://doi.org/ 10.1134/S1063739722040084
- Koswatta S.O., Lundstrom M.S., Nikonov D.E. Performance comparison between pin tunneling transistors and conventional MOSFETs // IEEE Trans. Electron. Dev. 2009. V. 56. P. 456—463. https://doi.org/10.1109/TED.2008.2011934
- Yu Y.S., Cho N., Hwang S.W., Ahn D. Analytical threshold voltage model including effective conducting path effect (ECPE) for surrounding-gate MOSFETs (SGMOSFETs) with localized charges // IEEE Trans. Electron. Dev. 2010. V. 57. P. 3176—3180. https://doi.org/10.1109/TED.2010.2066278
- Abdi D.B., Kumar M.J. 2-D threshold voltage model for the double-gate pnpn TFET with localized charges // IEEE Trans. Electron. Dev. 2016. V. 63. P. 3663—3668. https://doi.org/10.1109/TED.2016.2589927
- Grasser T. (ed.). Bias Temperature Instability for Devices and Circuits. Springer Science + Business Media, New York/ 2014. ISBN: 9781461479086. 810 p.
- Sahay S., Kumar M. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation. IEEE Press, Wiley, 2019. ISBN: 9781119523536. 496 p.
- Lundstrom M., Guo J. Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer, New York, 2006. ISBN 9780387280028. 218p.
- Schwierz F., Wong H., Liou J.J. Nanometer CMOS. Pan Stanford Publishing. Singapore, 2010. ISBN: 9789814241083. 350p.
- Sano N. Physical issues in device modeling: Length-scale, disorder, and phase interference // In 2017 International Conference on Simulation of Semiconductor Processes and Devices, Sept. 2017. Р. 1—4. https://doi.org/10.23919/SISPAD.2017.8085249
- Fischetti M.V., Vandenberghe W.G. Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Springer. USA, 2016. ISBN 9783319011004. 474 p.
- Reggiani S., Barone G., Poli S., Gnani E., Gnudi A., Baccarani G., Chuang M.-Y., Tian W., Wise R. TCAD simulation of hot-carrier and thermal degradation in STI-LDMOS transistors // IEEE Trans. Electron Devices. 2013. V. 60. P. 691—698. https://doi.org/10.1109/TED.2012.2227321
- Young K.K. Analysis of conduction in fully depleted SOI MOSFETs // IEEE Trans. Electron Devices. 1989. V. 36. P. 504—506. https://doi.org/10.1109/16.19960.
- Bardon M.G., Neves H.P., Puers R., Van Hoof C. Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions // IEEE Trans. Electron Devices. 2010. V. 57. P. 827—834. https://doi.org/10.1109/TED.2010.2040661
- Chiang T.K., Chen M.L. A new analytical threshold voltage model for symmetrical double-gate MOSFETs with high-k gate dielectrics // Solid-State Electron. 2007. V. 51. P. 387—393. https://doi.org/10.1016/j.sse.2007.01.026
- He J., Chan M., Zhang X., Wang Y. A carrier-based analytic DVIC model for long channel undoped cylindrical surrounding-gate MOSFETs // Solid State Electron. 2006. V. 50. P. 416—421. https://doi.org/10.1016/j.sse.2006.01.015
- Sze S.M. Physics of Semiconductor Device (2nd edn) // John Wiley and Sons Ltd, USA, 1981. ISBN: 978-0471098379. 868p.
- Karthigai Pandian M., Balamurugan N.B. Analytical threshold voltage modeling of surrounding gate silicon nanowire transistors with different geometries // J. Electric Eng. Technol. 2014. V. 9. No. 6. P. 2079—2088. https://doi.org/10.5370/JEEET.2014.9.6.2079
- Chiang T-K. A new quasi-3-D compact threshold voltage model for Pi-gate MOSFETs with the interface trapped charges // IEEE Transactions on Nanotechnology. 2015. V. 14. P. 555—560. https://doi.org/10.1109/TNANO.2015.2416198
- Auth C.P., Plummer J.D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFETs // IEEE Trans. on Electron Devices. 1997. V. 18. P. 74—76. https://doi.org/10.1109/55.553049
- Masal’skii N.V. Modeling the CMOS characteristics of a completely depleted surrounding-gate nanotransistor and an unevenly doped working region // Russian Microelectronics. 2019. V. 48. P. 394—401. https://doi.org/10.1134/S1063739719060052
- Маsalsky N.V. CVC simulation of ultrathin Soi-Cmos nanotransistors with a fully enclosed gate // Russian Microelectronics. 2021. V. 50. P. 387—393. https://doi.org/10.1134/S1063739721050036.
- Madan J., Chaujar R. Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance // Superlattices Microstruct. 2017. V. 102. P. 17—26. https://doi.org/10.1016/j.spmi.2016.12.034
补充文件
