Degradation of dibutyl phthalate by halotolerant strain Pseudarthrobacter sp. NKDBFgelt
- 作者: Yastrebova O.V.1, Pyankova A.A.1, Nazarov A.V.1, Nechaeva Y.I.1, Korsakova E.S.1, Plotnikova E.G.1
-
隶属关系:
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
- 期: 卷 61, 编号 3 (2025)
- 页面: 283-293
- 栏目: Articles
- URL: https://ruspoj.com/0555-1099/article/view/689353
- DOI: https://doi.org/10.31857/S0555109925030064
- EDN: https://elibrary.ru/FNVHRW
- ID: 689353
如何引用文章
详细
Dibutyl phthalate (DBP) is the di-n-butyl ester of ortho-phthalic acid, widely used in the chemical industry as a plasticizer and is a common environmental pollutant. The ability of the halotolerant strain Pseudarthrobacter sp. NKDBFgelt (VKM Ac-3035) isolated from the rhizosphere soil of a salt mining area (Perm Krai, Russia) to use DBP as the sole source of carbon and energy was studied. The strain NKDBFgelt was capable of growth on DBP and ortho-phthalic acid (PA) at high salinity (up to 30 g/L and 50 g/L NaCl, respectively), as well as growth on DBP at a high concentration — up to 9 g/L. The strain degraded 75.2% DBP (initial concentration 200 mg/L DBP) by 72 h of cultivation in the absence of salt. With increased salinity of the medium (30–70 g/l NaCl), DBP degradation was recorded at a level of 66.95–27.8%. Analysis of the genome of the strain NKDBFgelt revealed clusters of genes involved in the degradation of DBP, PA, benzoic acid, as well as genes encoding enzymes of the main degradation pathways of aromatic compounds. The halotolerant strain Pseudarthrobacter sp. NKDBFgelt has a high degradative potential and is promising in the development of new biotechnologies for the restoration of soils contaminated with phthalic acid esters.
全文:

作者简介
O. Yastrebova
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: olyastr@mail.ru
俄罗斯联邦, Perm, 614081
A. Pyankova
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Email: olyastr@mail.ru
俄罗斯联邦, Perm, 614081
A. Nazarov
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Email: olyastr@mail.ru
俄罗斯联邦, Perm, 614081
Yu. Nechaeva
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Email: olyastr@mail.ru
俄罗斯联邦, Perm, 614081
E. Korsakova
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Email: olyastr@mail.ru
俄罗斯联邦, Perm, 614081
E. Plotnikova
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Email: olyastr@mail.ru
俄罗斯联邦, Perm, 614081
参考
- Naveen K.V., Saravanakumar K., Zhang X., Sathiyaseelan A., Wang M.-H. // Environ. Res. 2022. V. 214. № 1. Article 113781. https://doi.org/10.1016/j.envres.2022.113781
- Das M.T., Kumar S.S., Ghosh P., Shah G., Malyan S.K., Bajar S. et al. // J. Hazard. Mater. 2021. V. 409. Article 124496. https://doi.org/10.1016/j.jhazmat.2020.124496
- Liang D.-W., Zhang T., Fang H.H.P., He J. // Appl. Microbiol. Biotechnol. 2008. V. 80. № 2. P. 183–198. https://doi.org/10.1007/s00253-008-1548-5
- Kong X., Jin D.C., Tai X., Yu H., Duan G.L., Yan X.L. et al. // Sci. Total. Environ. 2019. V. 667. P. 691–700. https://doi.org/10.1016/j.scitotenv.2019.02.385
- Zorníkova G., Jarosova A., Hrivna L. // Acta Univ. Agric. Et. Silvic. Mendel. Brun. 2011. V. 59. P. 233–238. https://doi.org/10.11118/actaun201159030233
- Yue D.M., Yu X.Z., Li Y.H. // Int. J. Environ. Sci. Technol. 2015. V. 12. P. 3009–3016. https://doi.org/10.1007/s13762-014-0704-y
- Gao M., Dong Y., Zhang Z., Song Z. // Environ. Pollut. 2020. V. 265. Article 114800. https://doi.org/10.1016/j.geoderma.2019.114126
- Azaizeh H., Castro P.M.L., Kidd P. // Organic Xenobiotics and Plants. / Eds. P. Schröder, C. D. Collins. Plant Ecophysiology. V. 8. Springer, 2011. P. 191–215. https://doi.org/10.1007/978-90-481-9852-8_9
- Бачурин Б.А., Одинцова Т.А. Современные экологические проблемы Севера. Апатиты: Изд-во Кольского НЦ РАН, 2006. T. 2. С. 7–9.
- Корсакова Е. С., Шестакова Е. А., Хайрулина Е. А., Назаров А. В. // Российский иммунологический журнал. 2015. Т. 9 (18). № 2 (1). С. 591–593.
- Cheng J.J., Liu Y.A., Wan Q., Yuan, L., Yu X.Y. // Sci. Total Environ. 2018. V. 640. P. 821–829. https://doi.org/10.1016/j.scitotenv.2018.05.336
- Patil, N.K., Karegoudar, T.B. // World J. Microbiol. Biotechnol. 2005. V. 21. № 8–9. P. 1493–1498. https://doi.org/10.1007/s11274-005-7369-0
- Jin D., Kong X., Liu H., Wang X., Deng Y., Jia M., Yu X. // Int. J. Mol. Sci. 2016. V. 17. Article 1012. https://doi.org/10.3390/ijms17071012
- Lu Y., Tang F., Wang Y., Zhao J., Zeng X., Luo Q., Wang L. // J. Hazard. Mater. 2009. V. 168. № 2–3. P. 938–943. https://doi.org/10.1016/j.jhazmat.2009.02.126
- Kumar V., Maitra S.S. // Biotech. 2016. V. 6. № 200. https://doi.org/10.1007/s13205-016-0524-5
- Liu T., Li J., Qiu L., Zhang F., Linhardt R.J., Zhong W. // Biotechnol. Bioeng. 2020. V. 117. P. 3712–3726. https://doi.org/10.1002/bit.27524
- Nandi M., Paul T., Kanaujiya D.K., Baskaran D., Pakshirajan K., Pugazhenthi G. // Water Supply. 2021. V. 21. № 5. P. 2084–2098. https://doi.org/10.2166/ws.2020.347
- Wen Z.D., Gao D.-W., Wu W.-M. // Appl. Microbiol. Biotechnol. 2014. V. 98. № 10. Р. 4683–4690. https://doi.org/10.1007/s00253-014-5568-z
- Chen F., Chen Y., Chen C., Feng L., Dong Y., Chen J., et al.. // Sci. Total Environ. 2021. V. 794. Article 148719. https://doi.org/10.1016/j.scitotenv.2021.148719
- Shariati S., Ebenau-Jehle C., Pourbabaee A.A., Alikhani H.A., Rodriguez-Franco M., Agne M. et al. // Biodegradation. 2022. V. 33. P. 59–70. https://doi.org/10.1007/s10532-021-09966-7
- Ren C., Wang Y., Wu Y., Zhao H.-P., Li L. // Biodegradation. 2024. V. 35(1). P. 87–99. https://doi.org/10.1007/s10532-023-10032-7
- Eaton R.W. // J. Bacteriol. 2001. V. 183. № 12. P. 3689–3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001
- Jin D., Kong X., Cui B., Bai Z., Zhang H. // Int. J. Mol. Sci. 2013. V. 14. P. 24046–24054. https://doi.org/10.3390/ijms141224046
- Xu X.-R., Li H.-B., Gu J.-D. // Ecotoxicol. Environ. Saf. 2007. V. 68. P. 379–385. https://doi.org/10.1016/j.ecoenv.2006.11.012
- Yang T., Ren L., Jia Y., Fan S., Wang J., Wang J. et al. // Int. J. Environ. Res. Public Health. 2018. V. 15. Article 964. https://doi.org/10.3390/ijerph15050964
- Корсакова Е.С., Пьянкова А.А., Плотникова Е.Г. // Вестник Пермского университета. Серия Биология. 2023. № 4. С. 349‒355. https://doi.org/10.17072/1994-9952-2023-4-349-355
- Raymond R.L. // Developments in Industrial Microbiology. 1961. V. 2. № 1. P. 23–32.
- Нетрусов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.
- Prjibelski A., Antipov D., Meleshko D., Lapidus, A., Korobeynikov A. // Current Protocols in Bioinformatics. 2020. V. 70. № 1. e102.
- Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK. 2010.
- Bolger A.M., Lohse M., Usadel B. // Bioinformatics. 2014. V. 30. № 15. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Antipov D., Hartwick N., Shen M., Raiko M., Lapidus A., Pevzner P. // Bioinformatics. 2016. V. 32. № 22. P. 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
- Schwengers O., Jelonek L., Dieckmann M.A., Beyvers S., Blom J., Goesmann A. // Microbial Genomics. 2021. V. 7. № 11. Article 000685. https://doi.org/10.1099/mgen.0.000685.
- Tatusov R., Galperin M., Natale D., Koonin E. // Nucleic Acids Res. 2000. V. 28. № 1. P. 6–33. https://doi.org/10.1093/nar/28.1.33
- Kanehisa M., Goto S., Sato Y., Kawashima M., Furumichi M., Tanabe M. // Nucleic Acids Res. 2014. V. 42. № D1. P. D199–D205. https://doi.org/10.1093/nar/gkt1076
- Li C., Liu C., Li R., Liu Y., Xie J., Li B. //Toxics. 2022. V. 10. Article 532. https://doi.org/10.3390/toxics10090532
- Кашнер Д. Жизнь микробов в экстремальных условиях. М.: Мир, 1981. 365 с.
- Latif A., Ahmad R., Ahmed J., Shah M. M., Ahmad R., Hassan A. // Sci. Hortic. 2023. V. 319. Article 112115. https://doi.org/10.1016/j.scienta.2023.112115
- Issifu M., Songoro E.K., Onguso J., Ateka E.M., Ngumi V.W. // Bacteria. 2022. V. 1. P. 191–206. https://doi.org/10.3390/bacteria1040015
- Li J., Peng W, Yin X., Wang X., Liu Z., Liu Q. et al.// J. Hazard. Mater. 2024. V. 465. Article 133138. https://doi.org/10.1016/j.jhazmat.2023.133138
- Ren L., Lin Z., Liu H., Hu H. // Appl. Microbiol. Biotechnol. 2018. V. 102. № 3. P. 1085–1096. https://doi.org/10.1007/s00253-017-8687-5
- Iwata M., Imaoka T., Nishiyama T., Fujii, T. // J. Biosci. Bioeng. 2016. V. 122. № 2. P. 140–145. https://doi.org/10.1016/j.jbiosc.2016.01.008
- Stanislauskienė R., Rudenkov M., Karvelis L. // Biologija. 2011. V. 57. № 3. P. 45–54.
补充文件
