Formation of Whisker-Like Morphology on the Surface of Carbon Fiber under Magnetron Sputtering
- Authors: Andrianova N.N.1,2, Borisov A.M.1,2,3, Metel A.S.3, Ovchinnikov M.A.1, Sleptsov V.V.2, Tsyrkov R.A.2
- 
							Affiliations: 
							- Skobeltsyn Institute of Nuclear Physics of Moscow State University
- Moscow Aviation Institute (National Research University)
- Moscow State University of Technology “STANKIN”
 
- Issue: No 11 (2023)
- Pages: 3-8
- Section: Articles
- URL: https://ruspoj.com/1028-0960/article/view/664712
- DOI: https://doi.org/10.31857/S1028096023110043
- EDN: https://elibrary.ru/FRIUAG
- ID: 664712
Cite item
Abstract
The effect of irradiation with hydrogen, helium, nitrogen and neon ions with an average energy of 0.8 keV on the surface morphology under magnetron sputtering of a high-modular carbon fiber made of polyacrylonitrile was studied experimentally. In all cases, a whisker-like relief was formed on the surface. The greatest height of whiskers was obtained under irradiation with nitrogen and neon ions, the lowest height and lower density of whiskers was obtained under irradiation with hydrogen ions. Comparison with irradiation of polyacrylonitrile carbon fiber with noble gas and nitrogen ions with energies of 10–30 keV shows that the whisker-like morphology complements the variety of types of ion-induced fiber surface morphology. The results obtained are discussed within the framework of existing models of formation of ion-induced morphological elements on the surface of graphite-like materials. It is assumed that there is a threshold in the number of radiation displacements created in the surface layer, leading to the observed qualitative difference in ion-induced morphology at low and high energies. The evaluations of the displacement profiles for the case of irradiation with hydrogen ions show several-fold fewer displacements than for other ions, which correlates with the observed differences in whiskering by selected ions and whisker growth factors observed in the experiment performed.
About the authors
N. N. Andrianova
Skobeltsyn Institute of Nuclear Physics of Moscow State University; Moscow Aviation Institute (National Research University)
														Email: ov.mikhail@gmail.com
				                					                																			                												                								Russia, 119991, Moscow; Russia, 125993, Moscow						
A. M. Borisov
Skobeltsyn Institute of Nuclear Physics of Moscow State University; Moscow Aviation Institute (National Research University); Moscow State University of Technology “STANKIN”
														Email: ov.mikhail@gmail.com
				                					                																			                												                								Russia, 119991, Moscow; Russia, 125993, Moscow; Russia, 127055, Moscow						
A. S. Metel
Moscow State University of Technology “STANKIN”
														Email: ov.mikhail@gmail.com
				                					                																			                												                								Russia, 127055, Moscow						
M. A. Ovchinnikov
Skobeltsyn Institute of Nuclear Physics of Moscow State University
							Author for correspondence.
							Email: ov.mikhail@gmail.com
				                					                																			                												                								Russia, 119991, Moscow						
V. V. Sleptsov
Moscow Aviation Institute (National Research University)
														Email: ov.mikhail@gmail.com
				                					                																			                												                								Russia, 125993, Moscow						
R. A. Tsyrkov
Moscow Aviation Institute (National Research University)
														Email: ov.mikhail@gmail.com
				                					                																			                												                								Russia, 125993, Moscow						
References
- Мелешко А.И., Половников С.П. Углерод, углеродные волокна, углеродные композиты. М.: САЙН-ПРЕСС, 2007. 192 с.
- Gibson R.F. // Compos. Struct. 2010. V. 92. Iss. 12. P. 2793. https://www.doi.org/10.1016/j.compstruct.2010.05.003
- Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. Suppl. 1. P. S33. https://www.doi.org/10.1023/B:INMA.0000036327. 90241.5a
- Romanov V.S., Lomov S.V., Verpoest I., Gorbatikh L. // Carbon. 2015. V. 82. P. 184. https://www.doi.org/10.1016/j.carbon.2014.10.061
- Sager R.J., Klein P.J., Lagoudas D.C., Zhang Q., Liu J., Dai L. // Compos. Sci. Technol. 2009. V. 69. Iss. 7–8. P. 898. https://www.doi.org/10.1016/j.compscitech. 2008.12.021
- Galan U., Lin Y., Ehlert G.J., Sodano H.A. // Compos. Sci. Technol. 2011. V. 71. Iss. 7. P. 946. https://www.doi.org/10.1016/j.compscitech.2011.02.010
- Liu Y., Liu X., Ma Z., He Y., Zhang X. // Carbon. 2022. V. 196. P. 128. https://www.doi.org/10.1016/j.carbon.2022.04.069
- Floro J.A., Rossnagel S.M., Robinson R.S. // J. Vacuum Sci. Technol. A. 1983. V. 1. P. 1398. https://www.doi.org/10.1116/1.572029
- Van Vechten J.A., Solberg W., Batson P.E., Cuomo J.J., Rossnagel S.M. // J. Crystal Growth 1987. V. 82. Iss. 3. P. 289. https://www.doi.org/10.1016/0022-0248(87)90316-2
- Рогов А.В., Мартыненко Ю.В., Белова Н.Е., Шульга В.И. // Вопросы атомной науки и техники. Сер. термоядерный синтез. 2011. № 4. С. 65.
- Andrianova N.N., Borisov A.M., Mashkova E.S., Parilis E.S., Virgiliev Yu.S. // Horizons in World Physics. 2013. V. 280. P. 171.
- Andrianova N.N., Borisov A.M., Virgil`ev Yu.S. Mashkova E.S., Nemov A.S., Pitirimova E.A., Timofeev M.A. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2008. V. 2. № 3. P. 376. https://www.doi.org/10.1134/S1027451008030099
- Andrianova N.N., Borisov A.M., Kazakov V.A., Makunin V.A., Mashkova E.S., Ovchinnikov M.A. // Bull. RAS: Physics. 2020. V. 84. № 6. P. 707. https://www.doi.org/10.3103/S1062873820060039
- Andrianova N.N., Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Timofyev M.A., Vysotina E.A. // Vacuum. 2021. V. 188. P. 110177. https://www.doi.org/10.1016/j.vacuum.2021.110177
- Andrianova N.N., Borisov A.M., Makunin A.V., Mashkova E.S., Ovchinnikov M.A. // J. Phys.: Conf. Ser. 2019. V. 1396. P. 012003. https://www.doi.org/10.1088/1742-6596/1396/1/012003
- Andrianova N.N., Anikin V.A., Borisov A.M., Gorina V.A., Makunin A.V., Mashkova E.S., Ovchinnikov M.A., Cheblakova E.G., Sleptsov V.V. // J. Phys.: Conf. Ser. 2019. V. 1313. P. 012001. https://www.doi.org/10.1088/1742-6596/1313/1/012001
- Барченко В.Т., Колгин Е.А. Ионно-плазменные технологии в электронном производстве / Под ред. Ю.А. Быстрова. СПб.: Энергоатомиздат. Санкт-Петербургское отд-ние, 2001. 332 с.
- Ehrhart P., Schilling W., Ullmaier H. // Encyclopedia Appl. Phys. 1996. V. 15. P. 429. https://www.doi.org/10.1002/3527600434.eap373
- Avilkina V.S., Andrianova N.N., Borisov A.M., Mashkova E.S. // Bull. RAS. Phys. 2012. V. 76. P. 520. https://www.doi.org/10.3103/S106287381205005X
- Сошников И.П., Лунев А.В., Гаевский М.Э., Нестеров С.И., Кулагина М.М., Роткина Л.Г., Барченко В.Т., Калмыкова И.П., Ефимов А.А., Горбенко О.М. // ЖТФ. 2001 № 7. С. 106.
- Bacon D.J., Rao A.S. // J. Nucl. Mater. 1980. V. 91 P. 178. https://www.doi.org/10.1016/0022-3115 (80)90045-8
- Liu D., Cherns D., Johns S., Zhou Y., Liu J., Chen W.-Y., Griffiths I., Karthik C., Li M., Kuball M., Kane J., Windes W. // Carbon. 2021. V. 173 P. 215. https://www.doi.org/10.1016/j.carbon.2020.10.086
- Niwase K., Tanabe T. // J. Nucl. Mater. 1991. V. 179–181. P. 218. https://www.doi.org/10.1016/0022-3115(91)90065-F
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


