Modeling of the influence of field electron emission from a cathode with a thin insulating film on its sputtering in a gas discharge in a mixture of argon and mercury vapor
- Autores: Bondarenko G.G.1, Kristya V.I.2, Savichkin D.O.3, Fisher M.R.4
- 
							Afiliações: 
							- HSE University
- Bauman Moscow State Technical University
- Top Systems Ltd
- Bauman Moscow State Technical University, Kaluga Branch
 
- Edição: Nº 3 (2024)
- Páginas: 81-87
- Seção: Articles
- URL: https://ruspoj.com/1028-0960/article/view/664676
- DOI: https://doi.org/10.31857/S1028096024030132
- EDN: https://elibrary.ru/hekafe
- ID: 664676
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A model of the low-current gas discharge in a mixture of argon and mercury vapor in the presence of a thin insulating film on the cathode surface is proposed. The model takes into account that in such a mixture a substantial contribution to the ionization of the working gas can come from the ionization of mercury atoms during their collisions with metastable excited argon atoms. In the discharge, positive charges accumulate on the film surface, creating an electric field in the film sufficient to cause field emission of electrons from the cathode metal substrate into the insulator. Such electrons are accelerated in the film by the field and can escape from it into the discharge volume. As a result, the effective yield of ion-electron emission from the cathode increases. The temperature dependences of discharge characteristics are calculated and it is shown that, due to a rapid decrease in the concentration of mercury vapor in the mixture with decreasing temperature, the electric field strength in the discharge gap and the discharge voltage increase. The presence of a thin insulating film on the cathode can result in an improvement in its emission characteristics and a significant reduction in the discharge voltage. This causes a decrease in the energies of the ions and atoms bombarding the cathode surface, and, consequently, in the intensity of cathode sputtering in the discharge.
Texto integral
 
												
	                        Sobre autores
G. Bondarenko
HSE University
							Autor responsável pela correspondência
							Email: gbondarenko@hse.ru
				                					                																			                												                	Rússia, 							101000, Moscow						
V. Kristya
Bauman Moscow State Technical University
														Email: kristya@bmstu.ru
				                					                																			                								
Kaluga Branch
Rússia, 248000, KalugaD. Savichkin
Top Systems Ltd
														Email: gbondarenko@hse.ru
				                					                																			                												                	Rússia, 							127055, Moscow						
M. Fisher
Bauman Moscow State Technical University, Kaluga Branch
														Email: kristya@bmstu.ru
				                					                																			                												                	Rússia, 							248000, Kaluga						
Bibliografia
- Атаев А.Е. Зажигание ртутных разрядных источников излучения высокого давления. М.: Изд-во МЭИ, 1995. 168 c.
- Zissis G., Kitsinelis S. // J. Phys. D: Appl. Phys. 2009. V. 42. № 17. P. 173001. http://doi.org./10.1088/0022-3727/42/17/173001
- Langer R., Garner R., Paul I., Horn S., Tidecks R. // Eur. Phys. J. Appl. Phys. 2016. V. 76. № 1. P. 10802. http://doi.org./10.1051/epjap/2016160277
- Phelps A.V., Petrović Z.L. // Plasma Sources Sci. Tech. 1999. V. 8. № 3. Р. R21. http://doi.org./10.1088/0963-0252/8/3/201
- Lay B., Moss R.S., Rauf S., Kushner M.J. // Plasma Sources Sci. Technol. 2003. V. 12. № 1. P. 8. http://doi.org./10.1088/0963-0252/12/1/302
- Райзер Ю.П. Физика газового разряда. Долгопрудный: Интеллект, 2009. 736 с.
- Saifutdinov A.I. // Plasma Sources Sci. Tech. 2022. V. 31. № 9. P. 094008. http://doi.org./10.1088/1361-6595/ac89a7
- Sakai Y., Sawada S., Tagashira H. // J. Phys. D: Appl. Phys. 1989. V. 22. № 2. P. 282. http://doi.org./10.1088/0022-3727/22/2/007
- Petrov G.M., Giuliani J.L. // J. Appl. Phys. 2003. V. 94. № 1. P. 62. http://doi.org./10.1063/1.1576895
- Кристя В.И., Фишер М.Р. // Изв. РАН. Сер. физ. 2010. Т. 74. № 2. С. 298.
- Riedel M., Düsterhöft H., Nagel F. // Vacuum. 2001. V. 61. № 2. P. 169. http://doi.org./10.1016/S0042-207X(01)00112-9
- Гуторов К.М., Визгалов И.В., Маркина Е.А., Курнаев В.А. // Изв. РАН. Сер. физ. 2010. Т. 74. № 2. С. 208.
- Stamenković S.N., Marković V.Lj., Gocić S.R., Jovanović A.P. // Vacuum. 2013. V. 89. P. 62. http://doi.org./10.1016/j.vacuum.2012.09.010
- Bondarenko G.G., Fisher M.R., Kristya V.I. // Vacuum. 2016. V. 129. P. 188. http://doi.org./10.1016/j.vacuum.2016.01.008
- Hagelaar G.J.M., Kroesen G.M.W., Klein M.H. // J. Appl. Phys. 2000. V. 88. № 5. P. 2240. http://doi.org./10.1063/1.1287758
- Capdeville H., Pédoussat C., Pitchford L.C. // J. Appl. Phys. 2002. V. 91. № 3. P. 1026. http://doi.org./10.1063/1.1430891
- Ito T., Cappelli M.A. // Appl. Phys. Lett. 2007. V. 90. № 10. P. 101503. http://doi.org./10.1063/1.2711416
- Sukhomlinov V.S., Mustafaev A.S., Murillo O. // Phys. Plasmas. 2018. V. 25. № 1. P. 013513. http://doi.org./10.1063/1.5017309
- Кристя В.И., Савичкин Д.О., Фишер М.Р. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2016. № 4. С. 84. http://doi.org./10.7868/S0207352816040119
- Бондаренко Г.Г., Кристя В.И., Савичкин Д.О. // Изв. вузов. Физика. 2017. Т. 60. № 2. С. 129
- Bondarenko G.G., Kristya V.I., Savichkin D.O. // Vacuum. 2018. V. 149. P. 114. http://doi.org./10.1016/j.vacuum.2017.12.028
- Бондаренко Г.Г., Фишер М.Р., Мьо Ти Ха, Кристя В.И. // Изв. вузов. Физика. 2019. Т. 62. № 1. С. 72.
- Bondarenko G.G., Fisher M.R., Kristya V.I., Bondar-iev V. // High Temperature Material Proc. 2022. V. 26. № 1. P. 17. http://doi.org./10.1615/HighTempMatProc.2021041820
- Бондаренко Г.Г., Дубинина М.С., Фишер М.Р., Крис-тя В.И. // Изв. вузов. Физика. 2017. Т. 60. № 12. С. 48.
- Зыкова Е.В., Кучеренко Е.Т., Айвазов В.Я. // Радио- техника и электроника. 1979. Т. 24. № 7. С. 1464.
- Suzuki M., Sagawa M., Kusunoki T., Nishimura E., Ike-da M., Tsuji K. // IEEE Trans. ED. 2012. V. 59. P. 2256. http://doi.org./10.1109/TED.2012.2197625
- Уэймаус Д. Газоразрядные лампы. М.: Энергия, 1977. 344 с.
- Савичкин Д.О., Кристя В.И. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2019. № 2. С. 107. http://doi.org./10.1134/S0207352819020112
- Распыление твердых тел ионной бомбардировкой. Вып. 1 / Ред. Бериш Р. М.: Мир, 1984. 336 c.
- Распыление твердых тел ионной бомбардировкой. Вып. 2. / Ред. Бериш Р. М.: Мир, 1986. 488 c.
- Hine K., Yoshimura S., Ikuse K., Kiuchi M., Hashimo-to J., Terauchi M., Nishitani M., Hamaguchi S. // Jpn. J. Appl. Phys. 2007. V. 46. № 12L. P. L1132. http://doi.org./10.1143/JJAP.46.L1132
- Yoshimura S., Hine K., Kiuchi M., Hashimoto J., Terauchi M., Honda Y., Nishitani M., Hamaguchi S. // Jpn. J. Appl. Phys. 2012. V. 51. № 8S1. Р. 08HB02. http://doi.org./10.1143/JJAP.51.08HB02
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




