Особенности полимеризации метилметакрилата в присутствии новых карборановых комплексов рутения(II) и (III) с хелатными P‒O‒P-лигандами

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Исследована радикальная полимеризация метилметакрилата по механизму с переносом атома под действием систем на основе карборановых комплексов рутения(II) и (III), содержащих хелатные P‒O‒P-лиганды различного строения. Показано, что системы на основе данных металлокомплексов, четыреххлористого углерода и изопропиламина как восстанавливающего агента способны инициировать проведение радикальной полимеризации метилметакрилата. Наиболее эффективными среди исследованных являются системы на основе рутенакарборанов, содержащих в структуре 9,9-диметил-4,5-бис-(дифенилфосфино)ксантен в качестве лиганда. Указанные соединения способны проводить процесс в контролируемом режиме, о чем свидетельствует линейное увеличение молекулярной массы полимера и снижение значений дисперсности с ростом конверсии. Протекание процесса в контролируемом режиме в соответствии с механизмом полимеризации с переносом атома подтверждается наличием на концах полимерных цепей атомов хлора, обнаруженных методом времяпролетной масс-спектрометрии с применением матрично-активированной лазерной десорбции/ионизации. Показано, что возможность координации атома рутения атомом кислорода лиганда снижает скорость процесса полимеризации и степень контроля над ним.

全文:

受限制的访问

作者简介

Н. Князева

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: grishin_i@ichem.unn.ru
俄罗斯联邦, 603950 Нижний Новгород, пр. Гагарина, 23

И. Гришин

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

编辑信件的主要联系方式.
Email: grishin_i@ichem.unn.ru
俄罗斯联邦, 603950 Нижний Новгород, пр. Гагарина, 23

参考

  1. Lorandi F., Fantin M., Matyjaszewski K. // J. Am. Chem. Soc. 2022. V. 144. № 34. P. 15413.
  2. Awad M., Dhib R., Duever T. // J. Dispersion Sci. Technol. 2023. V. 44. № 8. P. 1433.
  3. Wang J.-S., Matyjaszewski K. // J. Am. Chem. Soc. 1995. V. 117. № 20. Р. 5614.
  4. Kato M., Kamigaito M., Sawamoto M., Higashimura T. // Macromolecules. 1995. V. 28. № 5. P. 1721.
  5. Percec V., Barboiu B. // Macromolecules. 1995. V. 28. № 23. P. 7970.
  6. Zaremskii M.Yu., Bukin E.A., Mineeva K.O., Zezin S.B. // Polumer Science B. 2020. V. 62. № 6. P. 583.
  7. Fors B.P., Hawker C.J. // Angew. Chem. Int. Ed. 2012. V. 51. № 35. P. 8850.
  8. Knyaseva N.А., Grishin I.D. // Polymer Science B. 2022. V. 64. № 5. P.
  9. Bortolamei N., Isse A.A., Di Marco V.B., Gennaro A., Matyjaszewski K. // Macromolecules. 2010. V. 43. № 22. P. 9257.
  10. Pavlovskaya M.V., Kriulichev I.P., Grishin D.F. // Russ. J. Appl. Chem. 2020. V. 93. № 9. P. 1332.
  11. MeleshkoТ.К., Razina A.B., Bogorad N.N., Kurlykin M.P., Kashina A.V., Gofman I.V., Ten’Kovtsev A.V., Yakimansky A.V. // Polymer Science B. 2021. V. 63. № 4. С. 385.
  12. Vargas M.G., Aquino G.M., Lugo C.A., Morales S.L., González J.E.T., Le Lagadec R., Alexandrova L.// Eur. Polym. J. 2018. V. 108.
  13. Cruz T.R., Silva E.A., Oliveira D.P., Martins D.M., Gois P.D.S., Machado A.E.H.,. Maia P.I.S, Goi B.E., Lima-Neto B.S., Carvalho-Jr V.P. // Appl. Organomet. Chem. 2020. V. 34. № 5. P. e5602.
  14. Martínez-Cornejo V., Velázquez-Roblero J., Rosiles-González V., Correa-Duran M., Avila-Ortega A., Hernández-Núñez E., Le Lagadec R., González-Díaz M.O. // Polymers. 2020. V. 12. № 8. P. 1663.
  15. Song T., Xiang Y., Gao J., Shen X. // Polymer Science, Series B. 2023. V. 65. № 2. P. 103–110.
  16. Dadashi-Silab S., Matyjaszewski K. // Molecules. 2020. V. 25. № 7. P. 1648.
  17. Parkatzidis K., Boner S., Wang H.S., Anastasaki A. // ACS Macro Lett. 2022. V. 11. № 7. P. 841.
  18. Tong Y., Liu Y., Chen Q., Mo Y., Ma Y. // Macromolecules. 2021. V. 54. № 13. P. 6117.
  19. Grishin I.D. // Polymer Science С. 2022. V. 64. № 2. P. 92.
  20. Szczepaniak G., Jeong J., Kapil K., Dadashi-Silab S., Yerneni S.S., Ratajczyk P., Lathwal S., Schild D.J., Das S.R., Matyjaszewski K. // Chem. Sci. 2022. V. 13. № 39. P. 11540.
  21. Lorandi F., Matyjaszewski K. // Israel J. Chem. 2020. V. 60. № 1–2. P. 108.
  22. Gupta V., Bhajiwala H.M. // Polyolefins J. 2023. V. 10. № 4. P. 235.
  23. Гришин И.Д., Князева Н.А., Пенкаль А.М. // Изв. РАН. Сер. хим. 2020. Т. 8. С. 1520.
  24. Grishin I.D., Turmina E.S., D’yachihin D.I., Chizhevsky I.T., Grishin D.F. // Polymer Science B. 2014. V. 56. № 1. P. 1.
  25. Adams G.M., Weller A.S. // Coord. Chem. Rev. 2018. V. 355. P. 150.
  26. Van Leeuwen P.W.N.M., Kamer P.C.J. // Catal. Sci. Technol. 2018. V. 8. № 1. P. 26.
  27. Zimina A.M., Somov N.V., Malysheva Yu.B., Knyazeva N.A., Piskunov A.V., Grishin I.D. // Inorganics. 2022. V. 10. № 11. P. 206.
  28. Frisch M.J., Trucks G.W., Schlegel H.B., et al. Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
  29. Grishin I.D., Chizhevsky I.T. // J. Organomet. Chem. 2014. V. 760. P. 24.
  30. Zimina A.M., Knyazeva N.A., Balagurova E.V., Dolgushin F.M., Somov N.V., Vorozhtsov D.L., Malysheva Yu. B., Grishin I.D. // J. Organomet. Chem. 2021. V. 946–947. P. 121908.

补充文件

附件文件
动作
1. JATS XML
2. Fig.

下载 (78KB)
3. Fig.

下载 (234KB)
4. Scheme 1.

下载 (58KB)
5. Scheme 2.

下载 (136KB)
6. Fig. 1. MALDI mass spectrum of PMMA obtained in the presence of a catalytic system based on complex 2 at 80 °C. [MMA] : [CCl4] : [En] : [i-PrNH2] = 10000 : 25 : 1 : 40. The matrix is DCTB, the ionizing agent is sodium trifluoroacetate.

下载 (349KB)
7. Fig. 2. Kinetic dependences (a) and dependences of the molecular weight characteristics of the obtained polymers on the conversion (b) during polymerization of MMA under the action of a catalytic system based on complexes 3 (circles) and 4 (triangles) in the presence of 25 vol. % toluene. Dark dots – M × 10-3, light dots – Ɖ; [MMA] : : [CCl4] : [En] : [i-PrNH2] = 10000 : 25 : 1 : 40. T = 80 °C. The dotted line is the theoretically calculated value of the molecular weight.

下载 (100KB)
8. Fig. 3. Kinetic curves of polymerization of MMA under the action of complexes 5 (circles) and 6 (triangles) in the presence of 25 vol. % toluene. [MMA] : [CCl4] : [En] : [i-PrNH2] = 10000 : 25 : 1 : 40. T = 80 °C.

下载 (45KB)
9. Fig. 4.

下载 (146KB)

版权所有 © Russian Academy of Sciences, 2024