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BUCKLING OF ORTHOTROPIC PLATES WITH THE TWO FREE EDGES LOADED
FOR THE PURE IN-PLANE BENDING MOMENT

In this paper we have solved the buckling problem of orthotropic plates with two free and two simply-supported edges
loaded for the pure in-plane bending moment. We have used the finite difference method to solve the problem.
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The buckling problem of rectangular plates involving two
opposite edges loaded with distributed stress has been studied
for a long time. Bubnov [1] and Timoshenko [2] were the first
who solved this problem for isotropic plates. The same
buckling problem of orthotropic plates was solved by
Lekhnitskii [3]. These classical solutions in the form of
trigonometric series are obtained for plates with simply-
supported edges. The Ritz energy method is used to define
critical loads because the partial differential equation of
stability involving the floating factor makes integration
difficult. Reddy [4] and Whitney [5] used the Ritz method for
solving this buckling problem of composite plates with simply-
supported edges loaded even with compressed stress.

Therefore, the buckling of plates was studied mostly in
widespread boundary conditions i.e. simply-supported edges.
There is only one reference to Nolke’s paper [6] in Bloom
and Coffin’s manual [7], in which the same problem is solved
for the plate with two clamped edges.

So we have decided to solve the buckling problem of the
orthotropic plate with two free and two simply-supported
edges loaded for the pure in-plane bending moment. We
have not been solving the buckling problem of orthotropic
plate loaded for line-distributed forces due to the limits. The
solutions for buckling of orthotropic plate loaded for even
compressed forces are given in Leissa’s manual [8].

In our research the solution of an original equation for
stability analysis is based on the Levy-type solution procedure.
It allows the reduction of partial differential equation to
ordinary differential equation. The latter is solved by the finite
difference method. Linear homogeneous algebraic combined
equations had been used. The determination of the critical
load is reduced to the calculation of buckling coefficient
corresponding to minimal eigenvalue of combined equations.
The solutions for isotropic plate buckling and symmetrically
reinforced orthotropic plate had been obtained as well.

The buckling solution.We have considered an orthotropic
plate the middle plane of which is corresponds to the Cartesian
coordinates xy. The dimensions of the plate are a and b as
shown in the figure below. Edges along the y = 0 and y = b are
free, and edges loaded with the line-distributed stress along
the x = 0 and x = a are simply-supported. The load distribution
corresponds to two bending in-plane moments.

The equation for the stability analysis of orthotropic plate
is given as follows
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where w = w(x,y) is the transverse displacement, D11, D12,
D22, D33 are the bending stiffnesses of the plate given in [9].

, ,x y xyN N N   are membrane stresses corresponding to the
subcritical state of the plate.

We assume that the origin stressed state corresponds to
it’s pure in-plane bend. Then membrane subcritical stresses
could be define as
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where N is the maximal stress value at edges y = 0, y = b.

Plate stress

Equation (1) with (2) taken in account is depicted as
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Let us consider the boundary conditions. Displacements
and bending moments are equal to null when the edges are
simply-supported (x = 0 x = a). Generalized forces and
bending moments are equal to null when the edges are free
(y = 0  y = b) [9]. These boundary conditions could be
derived from plate displacement w can be presented as
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at y = 0 and y = b. (5)
Thereby, the buckling problem of plate is reduced to the

definition of parameter N corresponding to nonzero solution
of the boundary-value problem (3, 4) and (5).

The fact that there are edges simply supported makes
the representation of solution possible (3) in Levy-type form,
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Here m is the amount of half-waves along side a, wm(y) is
an unknown function, m = m/a. However, there no
necessity to approximate the solution with series (6) in the
problem we overlook. It’s enough to keep one term of the
series corresponding to m = 1. Indeed, the buckling of the
plate doesn’t experience resistance along side a. Therefore,
the plate’s bend takes place with formation of only one half-
wave along side a. This half-wave has a maximal amplitude
at the edge y = 0, which decrease along y to the edge y = b.

Now the solution of the equation (3) can be presented as
( , ) ( )sinw x y w y x  . (7)

Here w(y) = w1(y), l = /a.
Substituting of (7) into equation (3) gives the ordinary

differential equation
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Here w = w(y).
Substituting of (7) into boundary conditions (5) gives
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where y = 0, y = b.
The difference method is used to solve equation (8). Let’s

divide side b into numerous equal parts. The points of
division have the following coordinates

( 1), 1,2, ...,iy s i i k   . (11)
Here s = b/n and is subinterval, k = n + 1.
The approximation of derivatives corresponding arbitrary

point yi gives
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Here ( )i iw w y .
Substituting of (12) into (8) gives the following finite

difference approximation of equation (8):
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Here Ai and Bi are defined as
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The transformation of equation (8) into dimensionless

form gives
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where ti = 1 – 2(i–1)/n,
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Here  is a non dimensional buckling coefficient.
Equation (15) writing for all points (i = 1, 2, …, k)

represents linear algebraic combined equations, however,
including outside edge points. The substituting of i = 1 and
i = k to equalities (14) gives

1 0 1 22A w w w   ,

1 1 0 1 2 34 6 4B w w w w w     (18)
and
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2 1 1 24 6 4k k k k k kB w w w w w        . (19)
Therefore, w–1, w0, wk+1, wk+2 are outside edge points. It

should be noted that unknown w0 and wk+1 are also including
in B2 Bk–1, giving
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Four equations need to define four outside edge

unknowns. These equations can be obtained by finite-
difference approximation of boundary conditions (9, 10). By
substituting of (12) into (9), and of (10) with i = 1 i = k, we
obtain
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Equations (21) give
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Equations (24) in accordance with (23) give

1 1 2 1 1 1 2 2 3(2 4 )( 2) 2(2 4 )w r r r w r r w w         , (26)

2 2 1 2 1 1 2 12(2 4 ) (2 4 )( 2)k k k kw w r r w r r r w          ,
where r2 = 2

2/n2.



23

Vestnik. Scientific Journal of Siberian State Aerospace University named after academician M. F. Reshetnev

So, equalities (23) and (26) define four outside edge
unknowns. Substituting of (23) and (26) into (18, 19) and (20)
gives

1 1 1A r w , 1k kA r w (27)
and
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Here g = 6 – 4u + uf, f = 2 + r1 + 4r2, u = r1 + 2, n = r2 – 2. It

should be noted that Ai (i = 2, …, k – 1) and Bi (i = 3, …,
k – 2) are still defined by equations (14).

Thereby, homogeneous algebraic linear combined
equations
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the approximated differential equation (8) contains unknown

1 2, , ..., kw w w only..
Combined equation (29) could be presented as the

following matrix equation
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The unspecified array of the matrix’s cells A and B are
equal to null. E is the identity matrix.

So, the problem we have considered has been reduced to
an eigenvalue problem (30). Minimal eigenvalue of linear
combined equations determine the value of the non
dimensional buckling coefficient hcr. The accuracy of
calculations is estimated by the comparison of results
obtaining different values k. Critical stress Ncr is defined by
the following equation

11 22
cr 2cr

D D
N

b
  . (32)

The value of cr depends on parameters , 1, 2 which
contain all the information about the size of the plate and its
bending stiffnesses.

Examples. The first example we overlook is that of an
isotropic plate. Bending stiffnesses at this case are defined
by the following expressions.

3

11 22 12
hD D E  ,

3

12 12
hD E  ,

3

33
1

2 12
hD E

 , (33)

where h – is the thickness of plate, E = E/(1 – 2). Here is
the modulus of elasticity, m is Poisson’s coefficient.

Expressions (16), (22) and (25) give us
21/ c  , 1  ,

1   , 2 (1 ) / 2   .
Here c = a/b is the ratio of the plate’s sides. In fact, the

buckling coefficient depends on parameter c only.
Dependence of cr on c has been studied for m = 0,3, n = 50.
Parameter c has varied within 1…5. The data is shown in
table 1.

The buckling coefficient could also be represented by an
expression obtained by the least-squares method, from which
we get
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0.2726c

 


. (34)

In the second example we have overlooked the plate
formed from unidirectional or orthogonal reinforced layers
which reinforce axes form angles  with axis x.

If there is a large amount of layers, the plate’s structure
could be considered as homogeneous and orthotropic. Then
the bending stiffnesses are defined as
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Here E1, E2 are modulus of elasticity along the reinforce-
direction and along the transverse direction respectively,
G12 is the rigidity modulus, 12, 21 are Poison’s coefficients.

The substituting of (35) into (16), (22) and (25) gives
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Thereby, the buckling coefficient depends on the
parameter c and the angle  for the orthotropic plate. A
transformation of the expression

2
cr
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11 22
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cr
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makes the parametrical analysis more convenient. Here
cr cr 11 22f f   , 11 11 1/f A E , 22 22 1/f A E ,

3

1 1 12
hD E . (40)

We have finished studying the dependence of cr on c
and. The calculation has been done for carbon-filled plastic
with elastic characteristics E1 = 142.8 GPa, E2 = 9.13 GPa,
G12 = 5.49 GPa, E1 = 142.8 GPa,12 = 0.02,21 = 0.32. The data
is shown in table 2.

The maximal buckling coefficient for the square plate
realizes with angle  = 14E. The optimal angle tends to 22E
with an elongation increase.

The buckling problem of orthotropic plates with two free
unloaded edges and two simply-supported edges loaded for
in-plane line-distributed stress had been solved. The
definition of the critical load has been reduced to the
calculation of a non dimensional buckling coefficient. The

c 1 2 3 4 5
cr 25.71 11.25 7.27 5.39 4.29

Table 1
The buckling coefficient cr(c)

c 1.0 2.0 3.0 4.0 5.0
 14.0 22.0 22.0 22.0 22.0

cr 16.17 6.29 3.94 2.88 2.27

Table 2
The dependence of parameters , , cr

value of the coefficient depends on plate’s geometric and
elastic parameters. The finite difference method had been
used to solve the aforementioned problem. The buckling
coefficient had been defined as a minimal eigenvalue of
homogeneous linear combined equations approximating the
boundary-value problem; it has been solved for the isotropic
plate and the orthotropic symmetrically reinforced plate.
Different elongation angles of optimal reinforcement for the
plates had been defined. We have completed studying the
influence of the side ratio and reinforcement angles on wave
generation.
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