Influence of abscisic acid on lipid-transfer protein accumulation and suberin deposition in pea roots under salinity
- 作者: Akhiyarova G.R.1, Vafina G.H.1, Arkhipova T.N.1, Ivanov I.I.1
-
隶属关系:
- Ufa Institute of Biology of Ufa Federal Research Center of the RAS
- 期: 编号 10 (2025)
- 页面: 52-59
- 栏目: Agroecology
- URL: https://ruspoj.com/0002-1881/article/view/695481
- DOI: https://doi.org/10.7868/S3034496425100075
- ID: 695481
如何引用文章
详细
It is known that plant responses to stress are coordinated by a variety of regulatory networks, including the induction of endogenous abscisic acid (ABA). The mechanism of the protective action of ABA was investigated, suggesting a conjugated interaction with lipid-transporting proteins (LTP) and their participation in the formation of lamellae of suberin in pea roots during salination. The immunohistochemical method showed that the NaCl-induced accumulation of LTP and ABA in the cell walls of the phloem was accompanied by the deposition of suberin in the endodermal region of the roots of pea seedlings. Unlike LTP, which were localized around phloem cells, ABA was present inside these cells. In addition, treatment of control plants with exogenous ABA led to the accumulation of LTP in phloem cells and contributed to root corking. Analysis of phloem exudate for the presence of LTP revealed an increase in their content under salinization conditions. These results indicate the importance of NaCl-induced accumulation of ABA in the regulation of LTP levels and enhanced formation of apoplastic barriers in the roots of pea plants.
作者简介
G. Akhiyarova
Ufa Institute of Biology of Ufa Federal Research Center of the RAS
Email: akhiyarova@rambler.ru
ul. Karla Marxa 16/2, Ufa 450054, Russia
G. Vafina
Ufa Institute of Biology of Ufa Federal Research Center of the RASul. Karla Marxa 16/2, Ufa 450054, Russia
T. Arkhipova
Ufa Institute of Biology of Ufa Federal Research Center of the RASul. Karla Marxa 16/2, Ufa 450054, Russia
I. Ivanov
Ufa Institute of Biology of Ufa Federal Research Center of the RASul. Karla Marxa 16/2, Ufa 450054, Russia
参考
- Hoh F., Pons J.L., Gautier M.F., de Lamotte F., Dumas C. Structure of a liganded type 2 non-specific lipid transfer protein from wheat and the molecular basis of lipid binding // Acta Crystallogr. D. Biol. Crystallogr. 2005. V. 61. P. 397–406. https://doi.org/10.1107/S0907444905000417
- Tassin S., Broekaert W.F., Marion D., Acland D.P., Ptak M., Vovelle F., Sodano P. Solution structure of ace-amp1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins // Biochem. 1998. V. 37. P. 3623–3637. https://doi.org/10.1021/bi9723515
- Melnikova D.N., Mineev K.S., Finkina E.I., Arseniev A.S., Ovchinnikova T.V. A novel lipid transfer protein from the dill Anethum graveolens L.: Isolation, structure, heterologous expression, and functional characteristics // J. Pept. Sci. 2016. V. 22. 59–66. https://doi.org/10.1002/psc.2840
- Bogdanov I.V., Shenkarev Z.O., Finkina E.I., Melnikova D.N., Rumynskiy E.I., Arseniev A.S., Ovchinnikova T.V. A novel lipid transfer protein from the pea Pisum sativum: Isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties // BMC Plant Biol. 2016. V. 16. P. 107–124. https://doi.org/10.1186/s12870-016-0792-6
- Wang P., Calvo-Polanco M., Reyt G., Barberon M., Champeyroux C., Santoni V., Maurel C., Franke R.B., Ljung K., Novak O., Geldner N., Boursiac Y., Salt D.E. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants // Sci. Rep. 2019. V. 9. P. 4227.
- García-Garrido J.M., Menossi M., Puigdoménech P., Martínez-Izquierdo J.A., Delseny M. Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice // FEBS Lett. 1998. V. 428. P. 193–199.
- Moraes G.P., Benitez L.C., do Amara M.N., Vighi I.L., Auler P.A., da Maia L.C., Bianchi V.J., Braga E.J.B. Expression of LTP genes in response to saline stress in rice seedlings // Genet. Mol. Res. 2015. V. 14. P. 8294–8305.
- Xu Y., Zheng X., Song Y., Zhu L., Yu Z., Gan L., Zhou S., Liu H., Wen F., Zhu C. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum // Sci. Rep. 2018. V. 8. P. 1–14. https://doi.org/10.1038/s41598-018-27274-8
- Shao Y., Cheng Y., Pang H., Chang M., He F., Wang M., Davis D.J., Zhang S., Betz O., Fleck C., Dai T., Madahhosseini S., Wilkop T.E., Jernstedt J., Drakakaki G. Investigation of salt tolerance mechanisms across a root developmental gradient in almond rootstocks // Front. Plant Sci. 2020. V. 11. P. 595055.
- Edqvist J., Blomqvist K., Nieuwland J., Salminen T.A. Plant lipid transfer proteins: Are we finally closing in on the roles of these enigmatic proteins? // J. Lipid Res. 2018. V. 59. P. 1374–1380.
- Deeken R., Saupe S., Klinkenberg J., Riedel M., Leide J., Hedrich R., Mueller T.D. The nonspecific lipid transfer protein ATLTPI-4 is involved in suberin formation of Arabidopsis thaliana crown gall // Plant Physiol. 2016. V. 172. P. 1911–1927.
- Финкина Е.И., Мельникова Д.Н., Богданов И.В., Овчинникова Т.В. Белки системы врожденного иммунитета растений, осуществляющие транспорт липидов: структура, функции и практическое применение // Acta Naturae. 2016. Т. 8. № 2(29). С. 20–36. https://doi.org/10.32607/20758251-2016-8-2-47-61
- Rahman M.M., Mostofa M.G., Rahman M.A., Miah M.G., Saha S.R., Karim M.A., Keya S.S., Akter M., Islam M., Phan L.-S. Insight into salt tolerance mechanisms of the halophyte Achras sapota: An important fruit tree for agriculture in coastal areas // Protoplasma. 2019. V. 256. P. 181–191.
- Coffey O., Bonfield R., Florine Corre F., Sirigiri J.A., Meng D., Fricke W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium // Ann. Bot. 2018. V. 122. P. 1131–1141. https://doi.org/10.1093/aob/mcy110
- Finkelstein R. Abscisic acid synthesis and response // Arab. Book. 2013. V. 11. e0166.
- Wang C., Yang C., Gao C., Wang Y. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses // Tree Physiol. 2009. V. 29. P. 1607–1619. https://doi.org/10.1093/treephys/tpp082
- Akhiyarova G.R., Finkina E.I., Ovchinnikova T.N., Veselov D.S., Kudoyarova G.R. Role of pea LTPs and abscisic acid in salt-stressed roots // Biomolecules. 2020. V. 10. P. 15.
- Arkhipova T., Martynenko E., Sharipova G., Kuzmina L., Ivanov I., Garipova M., Kudoyarova G. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants // Plants. 2020. V. 9. P. 1429.
- Bogdanov I.V., Finkina E.I., Balandin S.V., Melnikova D.N., Stukacheva E.A., Ovchinnikova T.V. Structural and functional characterization of recombinant isoforms of the lentil lipid transfer protein // Acta Nat. 2015. V. 7. P. 65–73.
- Sharipova G., Veselov D., Kudsoyarova G., Fricke W., Dodd I., Katsuhara M., Furuichi T., Ivanov I., Veselov S. Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA deficient barley mutant Az34 // Ann. Bot. 2016. V. 118. P. 777–785.
- Фурст Г.Г. Методы анатомо-гистохимического исследования растительных тканей. М.: Наука, 1979. 155 с.
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254.
- Laemmli U. Most commonly used discontinuous buffer system for SDS electrophoresis // Nature. 1970. V. 227. Р. 680–686.
- Buhot N., Gomès E., Milat M.-L., Ponchet M., Marion D., Lequeu J., Delrot S., Coutos-Thévenot P., Blein J.-P. Modulation of the biological activity of a tobacco LTP1 by lipid complexation // Mol. Biol. Cell. 2004. V. 15. P. 5047–5052.
- Edstam M.M., Laurila M., Höglund A., Raman A., Dahlström K.M., Salminen T.A., Edqvist J., Blomqvist K. Characterization of the GPI-anchored lipid transferproteins in the moss Physcomitrella patens // Plant Physiol. Biochem. 2014. V. 75. P. 55–69. https://doi.org/10.1016/j.plaphy.2013.12.001
- Hartung W., Sauter A., Hose E. Abscisic acid in the xylem: Where does it come from, where does it go to? // J. Exp. Bot. 2002. V. 53. P. 27–33.
- Hijaz F., Killiny N. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange) // PLoS ONE. 2014. V. 9. e101830. https://doi.org/10.1371/journal.pone.0101830
- Lee S.B., Suh M.-C. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis // Plant J. 2018. V. 96. P. 1206–1217.
- Rains M.K., de Silva N.D.G., Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues // Tree Physiol. 2018. V. 38. P. 340–361.
- Melnikova D.N., Finkina E.I., Bogdanov I.V., Tagaev A.A., Ovchinnikova T.V. Features and possible applications of plant lipid-binding and transfer proteins // Membranes. 2023. V. 13. P. 2.
补充文件



