Синтез пленок TiSiN методом реактивного магнетронного распыления при комнатной температуре

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методом реактивного магнетронного распыления катода смешанного состава TiSi (10%) при комнатной температуре получены образцы TiSiN. Исследование методами рентгенофазового и элементного анализа и рентгеновской фотоэлектронной спектроскопии показало формирование аморфной фазы с включениями нанокристаллов TiN с преобладанием кристаллографической плоскости (200) без включений нитрида кремния. Полученные образцы обладают твердостью до 31 ГПа. Отжиг при 500°С в условиях вакуума в течение 1 ч привел к увеличению степени окристаллизованности пленки без изменения преимущественной ориентации. Исследование дифрактограмм образцов, отожженных на воздухе при температурах 500 и 700°С, продемонстрировало устойчивость полученных пленок TiSiN к окислению при умеренных температурах.

Full Text

Restricted Access

About the authors

В. С. Суляева

Институт неорганической химии им. А.В. Николаева СО Российской академии наук

Email: ermakova@niic.nsc.ru
Russian Federation, пр. Академика Лаврентьева, 3, Новосибирск, 630090

M. M. Сыроквашин

Институт неорганической химии им. А.В. Николаева СО Российской академии наук

Email: ermakova@niic.nsc.ru
Russian Federation, пр. Академика Лаврентьева, 3, Новосибирск, 630090

A. К. Кожевников

Институт неорганической химии им. А.В. Николаева СО Российской академии наук

Email: ermakova@niic.nsc.ru
Russian Federation, пр. Академика Лаврентьева, 3, Новосибирск, 630090

E. Н. Ермакова

Институт неорганической химии им. А.В. Николаева СО Российской академии наук
пр. Академика Лаврентьева, 3, Новосибирск, 630090

Author for correspondence.
Email: ermakova@niic.nsc.ru
Russian Federation

References

  1. Aissani L., Alhussein A., Zia A.W., Mamba G., Rtimi S. Magnetron Sputtering of Transition Metal Nitride Thin Films for Environmental Remediation // Coatings. 2022. V. 12. P. 1746. https://doi.org/10.3390/coatings12111746
  2. Ma T., Hu J., Dong X. A Review of Physical Vapor Deposition Coatings for Rolling Bearings // Proc. IMech. Part J.: J Eng. Tribol. 2021. V. 236. P. 1–18. https://doi.org/10.1177/13506501211024106
  3. Скворцова С.В., Гвоздева О.Н., Шалин А.В., Степушин А.С., Сарычев С.М. Создание барьерных покрытий с помощью термической и термохимической обработки для формирования однонаправленных градиентных структур в двухфазных титановых сплавах // Журн. неорган. химии. 2021. T. 66. № 8. С. 1070–1076. https://doi.org/10.31857/S0044457X21080274
  4. Liu C., Leyland A., Bi Q., Matthews A. Corrosion Resistance of Multi-Layered Plasma-Assisted Physical Vapour Deposition TiN and CrN Coatings // Surf. Coat. Technol. 2001. V. 141. P. 164–173. https://doi.org/10.1016/S0257-8972(01)01267-1
  5. Navinsek B., Seal S. Transition Metal Nitride Functional Coatings // JOM. 2001. V. 53. P. 51–54. https://doi.org/10.1007/s11837-001-0072-1
  6. Bay N., Olsson D.D., Andreasen J.L. Lubricant Test Methods for Sheet Metal Forming // Tribol. Int. 2008. V. 41. P. 844–853. https://doi.org/10.1016/j.triboint.2007.11.017
  7. Podgornik B., Zajec B., Bay N., Vižintin J. Application of Hard Coatings for Blanking and Piercing Tools // Wear. 2011. V. 270. P. 850–856. https://doi.org/10.1016/j.wear.2011.02.013
  8. Rosu R.A., Serban V.A., Bucur A.I., Dragoş U. Deposition of Titanium Nitride and Hydroxyapatite-Based Biocompatible Composite by Reactive Plasma Spraying // Appl. Surf. Sci. 2012. V. 258. P. 3871–3876. https://doi.org/10.1016/j.apsusc.2011.12.049
  9. Guo W.P., Mishra R., Cheng C.W. Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold // ACS Photonics. 2019. V. 6. P. 1848–1854. https://doi.org/10.1021/acsphotonics.9b00617
  10. Guha S., Bandyopadhyay A., Das S., Swain B.P. Investigation of Titanium Silicon Nitride: A Review // Advances in Electronics, Communication and Computing. Lecture Notes in Electrical Engineering/Eds. Kalam A., Das S., Sharma K. V. 443. Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-4765-7_18
  11. Chen Y.H., Polonsky I.A., Chung Y.W., Keer L.M. Tribological Properties and Rolling-Contact-Fatigue Lives of TiN/SiNx Multilayer Coatings // Surf. Coat. Technol. 2002. V. 154. P. 152–161. https://doi.org/10.1016/S0257-8972(02)00022-1
  12. Akhter R., Zhou Z., Xie Z., Munroe P. TiN Versus TiSiN Coatings in Indentation, Scratch and Wear Setting // Appl. Surf. Sci. 2021. V. 563. P. 150356. https://doi.org/10.1016/j.apsusc.2021.150356
  13. Bartosik M., Hahn R., Zhang Z.L., Ivanov I., Arndt M., Polcik P., Mayrhofer P.H. Fracture Toughness of Ti-Si-N Thin Films // Int. J. Refract. Met. Hard. Mater. 2018. V. 72. P. 78–82. https://doi.org/10.1016/j.ijrmhm.2017.12.015
  14. Li S., Deng J., Qin X., Ji C. Effects of Ti Target Current on Properties of TiSiN Coatings // Surf. Eng. 2017. V. 33. P. 578–584. https://doi.org/10.1080/02670844.2015.1125408
  15. Greczynski G., Patscheider J., Lu J., Alling B., Ektarawong A., Jensen J., Petrov I., Greene J.E., Hultman L. Control of Ti1−xSixN Nanostructure via Tunable Metal-Ion Momentum Transfer during HIPIMS/DCMS Co-Deposition // Surf. Coat. Technol. 2015. V. 280. P. 174–184. https://doi.org/10.1016/j.surfcoat.2015.09.001.
  16. Van Bui H., Groenland A. W., Aarnink A. A.I., Wolters R.A.M., Schmitz J., Kovalgin A.Y. Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry // J. Electrochem. Soc. 2011. V. 158(3). P. H214–H220. http://dx.doi.org/10.1149/1.3530090
  17. Arab Pour Yazdi M., Lomello F., Wang J., Sanchette F., Dong Z., White T., Wouters Y., Schuster F., Billard A. Properties of TiSiN Coatings Deposited by Hybrid HiPIMS and Pulsed-DC Magnetron Co-Sputtering // Vacuum. 2014. V. 109. P. 43–51. https://doi.org/10.1016/j.vacuum.2014.06.023
  18. Gao Z., Malecka J.K., Bousser E., Zhang X., Chen Y., Liu H., Kelly P., Xiao P. Sputter-Deposited Nitrides for Oxidation Protection in a Steam Environment at High Temperatures // Thin Solid Films. 2019. V. 688. P. 137439. https://doi.org/10.1016/j.tsf.2019.137439
  19. Cheng Y.H., Browne T., Heckerman B. Nanocomposite TiSiN Coatings Deposited by Large Area Filtered Arc Deposition // J. Vacuum Sci. Technol. A. 2009. V. 27. P. 82–88. https://doi.org/10.1116/1.3043460
  20. Yang S.M., Chang Y.Y., Lin D.Y., Wang D.Y., Wu W. Mechanical and Tribological Properties of Multilayered TiSiN/CrN Coatings Synthesized by a Cathodic Arc Deposition Process // Surf. Coat. Technol. 2008. V. 202. P. 2176–2181. https://doi.org/10.1016/j.surfcoat.2007.09.004
  21. Mohammadpour E., Liew W.Y.H., Mondinos N., Altarawneh M., Lee S., Radevski, Minakshi M., Amri A., Jiang Z.T. Enhancement of Thermal and Mechanical Stabilities of Silicon Doped Titanium Nitride Coating by Manipulation of Sputtering Conditions // J. Mater. Res. Technol. 2022. V. 17. P. 1122–1131. https://doi.org/10.1016/j.jmrt.2022.01.039
  22. Miletić A., Panjan P., Čekada M., Kovačević L., Terek P., Kovač J., Dražič G., Škorić B. Nanolayer CrAlN/TiSiN Coating Designed for Tribological Applications // Ceram. Int. 2021. V. 47. P. 2022–2033. https://doi.org/10.1016/j.ceramint.2020.09.034
  23. Sateesh Kumar Ch., Saroj Kumar Patel. Performance Analysis and Comparative Assessment of Nano-Composite TiAlSiN/TiSiN/TiAlN Coating in Hard Turning of AISI 52100 Steel // Surf. Coat. Technol. 2018. V. 335. P. 265–279. https://doi.org/10.1016/j.surfcoat.2017.12.048
  24. Endler I., Höhn M., Schmidt J., Scholz S., Herrmann M., Knaut M. Ternary and Quarternary TiSiN and TiSiCN Nanocomposite Coatings Obtained by Chemical Vapor Deposition // Surf. Coat. Technol. 2013. V. 215. P. 133–140. https://doi.org/10.1016/j.surfcoat.2012.10.067
  25. Perez-Mariano J., Lau K.H., Sanjurjo A., Caro J., Casellas D., Colominas C. TiSiN Nanocomposite Coatings by Chemical Vapor Deposition in a Fluidized Bed Reactor at Atmospheric Pressure (AP/FBR-CVD) // Surf. Coat. Technol. 2006. V. 201. P. 2217–2225. https://doi.org/10.1016/j.surfcoat.2006.03.029
  26. Park I.W., Kim K.H. Coating Materials of TiN, Ti–Al–N, and Ti–Si–N by Plasma-Enhanced Chemical Vapor Deposition for Mechanical Applications // J. Mater. Proc. Technol. 2002. V. 130–13. P. 254–259. https://doi.org/10.1016/S0924-0136(02)00807-5
  27. Bendavid A., Martin P., Cairney J., Hoffman M., Fischer-Cripps A.C. Deposition of Nanocomposite TiN-Si3N4 Thin Films by Hybrid Cathodic Arc and Chemical Vapor Process // Appl. Phys. A. 2005. V. 81. P. 151–158. https://doi.org/10.1007/s00339-004-2951-0
  28. Inorganic Crystal Structure Database. FIZ Karlsruhe. https://icsd.products.fiz-karlsruhe.de/
  29. Oliver W.C., Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments // J. Mater. Res. 1992. V. 7. P. 1564–1583. https://doi.org/10.1557/JMR.1992.1564
  30. Юрьев Ю.Н., Михневич К.С., Бордулев Ю.С., Киселева Д.В., Новиков В.А., Сиделев Д.В. Реактивное осаждение электропроводящих пленок нитрида титана // Изв. вузов. Физика. 2014. Т. 57. № 11/2. С. 165–169. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000512106
  31. Cavaleiro D., Carvalho S., Cavaleiro A., Fernandes F. TiSiN(Ag) Films Deposited by HiPIMS Working in DOMS Mode: Effect of Ag Content on Structure, Mechanical Properties and Thermal Stability // Appl. Surf. Sci. 2019. V. 478. P. 426–434. https://doi.org/10.1016/j.apsusc.2019.01.174
  32. Akhter R., Zhou Z., Xie Z, Munroe P. Influence of Substrate Bias on the Scratch, Wear and Indentation Response of TiSiN Nanocomposite Coatings // Surf. Coat. Technol. 2021. V. 425. P. 127687. https://doi.org/10.1016/j.surfcoat.2021.127687
  33. Vennemann A., Stock H.-R, Kohlscheen J., Rambadt S., Erkens G. Oxidation Resistance of Titanium–Aluminium–Silicon Nitride Coatings // Surf. Coat. Technol. 2003. V. 174–175. P. 408–415. https://doi.org/10.1016/S0257-8972(03)00407-9
  34. NIST X-ray Photoelectron Spectroscopy (XPS) Database, Version 3.5. Available online: https://srdata.nist.gov/xps/ (accessed on 14 November 2023).
  35. Zhou Z.F., Tam P.L., Shum P.W., Li K.Y. High Temperature Oxidation of CrTiAlN Hard Coatings Prepared by Unbalanced Magnetron Sputtering // Thin Solid Films. 2009. V. 517. P. 5243–5247. https://doi.org/10.1016/j.tsf.2009.03.115
  36. Ananthakumar R., Subramanian B., Kobayashi A., Jayachandran M. Electrochemical Corrosion and Materials Properties of Reactively Sputtered TiN/TiAlN Multilayer Coatings // Ceram. Int. 2012. V. 38. P. 477–485. https://doi.org/10.1016/j.ceramint.2011.07.030
  37. Veprek S., Niederhofer A., Moto K., Bolom T., Männling H.-D., Nesladek P., Dollinger G, Bergmaier A. Composition, Nanostructure and Origin of the Ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 Nanocomposites with HV=80 to ≥105 GPa // Surf. Coat. Technol. 2000. V. 133–134. P. 152–159. https://doi.org/ 10.1016/S0257-8972(00)00957-9
  38. Deng Z.-W., Souda R. XPS Studies on Silicon Carbonitride Films Prepared by Sequential Implantation of Nitrogen and Carbon into Silicon // Diamond Relat. Mater. 2002. V. 11. P. 1676–1682. https://doi.org/10.1016/S0925-9635(02)00143-7
  39. Patscheider J., Zehnder T., Diserens M. Structure–Performance Relations in Nanocomposite Coatings // Surf. Coat. Technol. 2001. V. 146–147. P. 201–208. https://doi.org/10.1016/S0257-8972(01) 01389-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences