Создание тонких пленок YFeO3, допированного Sr2+, обладающих газочувствительными свойствами

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Золь–гель-методом синтезирован нанокристаллический YFeO3 при наличии и отсутствии допирования ионами Sr2+. Структура материала и элементный состав определены с помощью рентгенофазового анализа и локального рентгеноспектрального анализа. Методом spin-coating на поверхности кремниевой подложки были сформированы тонкие пленки синтезированных нанопорошков. Исследование поверхностного удельного сопротивления на воздухе и в присутствии детектируемых газов продемонстрировало наличие у полученных материалов сенсорного отклика на NH3 и CO. Концентрация исследуемых газов составила 50 ppm, величина сенсорного сигнала – более 50%.

Full Text

Restricted Access

About the authors

В. Ф. Кострюков

Воронежский государственный университет

Author for correspondence.
Email: vc@chem.vsu.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

А. С. Паршина

Воронежский государственный университет

Email: vc@chem.vsu.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

И. Я. Миттова

Воронежский государственный университет

Email: vc@chem.vsu.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

References

  1. Kohl D. Function and Applications of Gas Sensors // J. Phys. D.: Appl. Phys. 2001. V. 34. № 19. P. 125–149. https://doi.org/10.1088/0022-3727/34/19/201
  2. Park C.O., Akbar S.A., Weppner W. Ceramic Electolytes and Electrochemical Sensors // J. Mater. Sci. 2003. V. 38. P. 4639–4660. https://doi.org/10.1023/A:1027454414224
  3. Wang C., Yin L., Zhang L., Xiang D., Gao R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors // Sensors. 2010. V. 10. P. 2088–2106. https://doi.org/10.3390/s100302088
  4. Neri G. First Fifty Years of Chemoresistive Gas Sensors // Chemosensors. 2015. V. 3. № 1. P. 1–20. https://doi.org/10.3390/chemosensors3010001
  5. Lee S.P. Electrical Behavior in Gas–Solid Interface of Gas Sensors Based on Oxide Semiconductors // Int. J. Appl. Ceram. Technol. 2006. V. 3. № 3. P. 225–229. https://doi.org/10.1111/j.1744-7402.2006.02074.x
  6. Марикуца А.И., Воробьева Н.А., Румянцева М.Н., Гаськов А.М. Активные центры на поверхности нанокристаллических полупроводниковых оксидов ZnO, SnO2 и газовая чувствительность // Изв. АН. Сер. хим. 2017. № 10. С. 1728–1764.
  7. Singh N. Yan C., Lee P.S. Room Temperature CO Gas Sensing Using Zn-doped In2O3 Single Nanowire Field Effect Transistors // Sens. Actuators, B. 2010. V. 150. № 1. P. 19–24. https://doi.org/10.1016/j.snb.2010.07.051
  8. Fergus J.W. Perovskite Oxides for Semiconductor-Based Gas Sensors // Sens. Actuators, B. 2007. V. 123. P. 1169–1179. https://doi.org/10.1016/j.snb.2006.10.051
  9. Huntera G.W., Xua J.C., Evansa L.J., Vander Walb R.L., Bergerb G.M., Kulis M.J., Liu C.C. Chemical Sensors Based оn Metal Oxide Nanostructures // ECS Trans. 2006. V. 9. P. 199–209. https://doi.org/10.1149/1.2357111
  10. Meyer R., Waser R. Resistive Donor-doped SrTiO3 Sensors: I. Basic Model for a Fast Sensor Response // Sens. Actuators, B. 2004. V. 101. P. 335–345. https://doi.org/10.1016/j.snb.2004.04.004
  11. Bak T., Nowotny J., Sorrell C.C., Zhou M.F., Vance E.R. Charge Transport in CaTiO3: I. Electrical Conductivity // J. Mater. Sci. Mater. Electron. 2004. V. 15. № 10. P. 635–644. https://doi.org/10.1023/B:JMSE.0000038917.73334.92
  12. Zhou M.F., Bak T., Nowotny J., Rekas M. Defect Chemistry and Semiconducting Properties of Calcium Titanate // J. Mater. Sci. Mater. Electron. 2002. V. 13. P. 697–704. https://doi.org/10.1023/A:1021552602704
  13. Чумакова В.Т., Марикуца А.В., Румянцева М.Н. Нанокристаллический кобальтит лантана как материал для газовых сенсоров // Журн. прикл. химии. 2021. Т. 94. № 12. С. 1390–1398. https://doi.org/10.1134/S1070427221120119
  14. Wenbo Q., Zhenyu Y., Hongliang G., Renze Z., Fanli M. Perovskite-Structured LaCoO3 Modified ZnO Gas Sensor and Investigation on Its Gas Sensing Mechanism by First Principle // Sens. Actuators, B. 2021. V. 341. Р. 1–15. https://doi.org/10.1016/j.snb.2021.130015
  15. Balamurugan C., Lee D.W. Perovskite Hexagonal YMnO3 Nanopowder as p-type Semiconductor Gas Sensor for H2S Detection // Sens. Actuators, B. 2015. № 221. Р. 857–866. http://dx.doi.org/10.1016/j.snb.2015.07.018
  16. Zhao M., Sun L.H., Hu J.F., Qin H.W. CO Sensing Properties of La1–xCaxFeO3 Perovskite Nanocrystalline Materials // Key Eng. Mater. 2011. V. 495. Р. 323–326. https://doi.org/10.4028/www.scientific.net/KEM.495.323
  17. Zhang L., Qin H., Song P., Hu J., Jiang M. Electric Properties and Acetone-Sensing Characteristics of La1–xPbxFeO3 Perovskite System // Mater. Chem. Phys. 2006. V. 98. № 2. Р. 358–362. https://doi.org/10.1016/j.matchemphys.2005.09.041
  18. Thuy N.T., Minh D.L., Giang H.T., Toan N.N. Structural, Electrical, and Ethanol-Sensing Properties of La1–хNdхFeO3 Nanoparticles // Adv. Mater. Sci. Eng. 2014. V. 8. P. 1–5. http://dx.doi.org/10.1155/2014/685715
  19. Lantto V., Saukko S., Toan N.N., Reyes L.F., Granqvis C.G. Gas Sensing with Perovskite-Like Oxides Having ABO3 and BO3 Structures // J. Electroceram. 2004. V. 13. P. 721–726. https://doi.org/10.1007/s10832-004-5182-z
  20. Nguyen A.T., Knurova M.V., Nguyen T.M., Mittova V.O., Mittova I.Ya. Synthesis and the Study of Magnetic Characteristics of Nano La1–xSrxFeO3 by Co-Precipitation Method // Nanosyst. Phys. Сhem. Math. 2014. V. 5. № 5. P. 692–702.
  21. Нгуен А.Т., Миттова В.О., Миттова И.Я., Так Д.В. Синтез нанопорошков La1–xSr(Ca)x FeO3 (x = 0; 0.1; 0.2; 0.3) золь-гель методом // Конденсированные среды и межфазные границы. 2010. Т. 12. № 1. С. 56–60.
  22. Mittova I.Ya., Sladkopevtsev B.V., Mittova V.O., Nguyen A.T., Kopeichenko E.I., Khoroshikh N.V., Varnachkina I.A. Formation of Nanoscale Films of the (Y2O3–Fe2O3) on the Monocrystal InP // Condens. Matter Interphases. 2019. V. 21. № 3. P. 406–418. https://doi.org/10.17308/kcmf.2019.21/1156
  23. Addabboa T., Bertoccia F., Forta A., Mugnainia M., Shahina L., Vignolia V., Spiniccia R., Rocchia S., Gregorkiewitz M. An Artificial Olfactory System (AOS) for Detection of Highly Toxic Gases in Air Based on YCoO3 // Procedia Eng. 2014. V. 87. P. 1095–1098. https://doi.org/10.1016/j.proeng.2014.11.355
  24. JCPDS PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 Database, International Centre for Diffraction Data. 1997.
  25. Ghasdi M., Alamdari H. CO Sensitive Nanocrystalline LaCoO3 Perovskite Sensor Prepared by High Energy Ball Milling // Sens. Actuators, B. 2010. V. 148. P. 478–485. https://doi.org/10.1016/j.snb.2010.05.056
  26. Chaudhary G., Pawar M. Sensing Behavior of Sr and Bi Doped LaCoO3 Sensors // Sens. Transducers. 2008. V. 88. № 2. P. 74–78. https://www.sensorsportal.com/HTML/DIGEST/february_08/P_241.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of powders of nominal composition Y1–xSrxFeO3 (1 – YFeO3, 2 – Y0.95Sr0.05FeO3, 3 – Y0.9Sr0.1FeO3, 4 – Y0.85Sr0.15FeO3), obtained by the co-precipitation method, after annealing at a temperature of 750°C for 60 min.

Download (252KB)
3. Fig. 2. TEM images of nanoparticles: a – YFeO3, b – Y0.95Sr0.05FeO3, c – Y0.9Sr0.1FeO3, d – Y0.85Sr0.15FeO3.

Download (203KB)
4. Fig. 3. TEM images of a sample of composition Y0.9Sr0.1FeO3: a – microdiffraction, b – bright-field image, c – dark-field image.

Download (201KB)
5. Fig. 4. Specific surface resistance of the obtained nanopowders in air (a), in the presence of NH3 (50 ppm) (b), CO (50 ppm) (c).

Download (274KB)
6. Fig. 5. Sensory response of Y1–xSrxFeO3 nanopowders in the presence of NH3 (50 ppm) (a), CO (50 ppm) (b).

Download (563KB)

Copyright (c) 2024 Russian Academy of Sciences