Comparison of linear and extended Kalman filters of integer and fractional orders for estimation the state and parameters of discrete fractional dynamic systems
- 作者: Amosov O.S.1, Amosova S.G.1
-
隶属关系:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- 期: 编号 5 (2024)
- 页面: 24-37
- 栏目: INFORMATION PROCESSING AND IDENTIFICATION
- URL: https://ruspoj.com/0002-3388/article/view/681841
- DOI: https://doi.org/10.31857/S0002338824050022
- EDN: https://elibrary.ru/TEMFDR
- ID: 681841
如何引用文章
详细
Discrete linear and extended Kalman filters of integer and fractional orders are presented for estimating the state and unknown parameters of linear and nonlinear discrete fractional order systems. A comparison of traditional and fractional Kalman filters is given. The features and advantages of the fractional algorithm are considered, which are illustrated with examples of using discrete linear and extended Kalman filters.
作者简介
O. Amosov
V.A. Trapeznikov Institute of Control Sciences of RAS
编辑信件的主要联系方式.
Email: osa18@yandex.ru
俄罗斯联邦, Moscow
S. Amosova
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: amosovasg@yandex.ru
俄罗斯联邦, Moscow
参考
- Летников А.В. Теория дифферен цирования с произвольным указателем // Мат. сб. 1868. Т. 3. Вып.1. С. 1–68.
- Оldham K.B., Spanier J. The Fractional Calculus. Acad. Press., 1974.
- Васильев В.В., Симак Л.А. Дробное исчисление и аппроксимационные методы в моделировании динамических систем. Киев: НАН Украины, 2008.
- Samko S.G., Ross B. Integration and Differentiation to a Variable Fractional Order // Integr. Transf. Spec. Funct. 1993. V. 1. No 4. P. 277–300.
- Lorenzo C.F., Hartley T.T. Initialization, Conceptualization, and Application in the Generalized Fractional Calculus // Crit. Rev. Biomed. Eng. 2007. V. 35. No 6. P. 477–553.
- Coimbra C.F.M. Mechanics with Variable-order Differential Operators // Ann. Der Phys. 2003. V. 12. No (11–12). P. 692–703.
- Dabiri A., Moghaddam B.P., Machado J.A.T. Optimal Variable-order Fractional PID Controllers for Dynamical Systems // J. Comput. Appl. Math. 2018. V. 339. P. 40–48.
- Aгаджанов А.Н. Фрактальные функции с непрерывными производными типа Вейля переменного порядка в задачах управления распределенными системами // ДАН. 2017. Т. 473. № 1. С. 7–11.
- Agadzhanov A.N. Fractal and Infinitely Differentiable Functions in Compactly Supported Control Problems for Hyperbolic Distributed Systems // Doklady Mathematics. 2008. V. 77. No 1. P. 98–101.
- Постнов С.С. Оптимальное управление для систем, моделируемых диффузионно-волновым уравнением // Владикавказский математический журн. 2022. Т. 24. Вып. 3. С. 108–119.
- Бештоков М.Х. Краевые задачи для уравнения соболевского типа дробного порядка c эффектом памяти // Вестн. Самарск. гос. техн. ун-та. Сер. Физ.-мат. науки. 2022. Т. 26. № 4. С. 607–629.
- Irwaq I.A., Alquran M., Ali M., Jaradat I., Noorani M.S.M. Attractive New Fractional-integer Power Series Method for Solving Singularly Perturbed Differential Equations Involving Mixed Fractional and Integer Derivatives // Results in Physics. 2021. V. 20. No 103780.
- Yuan W., Zhang Ch., Li D. Linearized Fast Time-stepping Schemes for Time-space Fractional Schrodinger Equations // Physica D. 2023. V. 454. No 133865.
- Kobelev Y.L., Kobelev L.Y., Klimontovich Y.L. Anomalous Diffusion with Time-and Coordinate-dependent Memory // Dokl. Phys. 2003. V. 48. No 6. P. 264–268.
- Chen Y., Wei Y., Liu D., Yu H. Numerical Solution for a Class of Nonlinear Variable Order Fractional Differential Equations with Legendre Wavelets // Appl. Math. Lett. 2015. V. 46. P. 83–88.
- Shen S., Liu F., Chen J., Turner I., Anh V. Numerical Techniques for the Variable Order Time Fractional Diffusion Equation. Appl. Math. Comput. 2011. V. 218. No 22. P. 10861–10870.
- Lin R., Liu F., Anh V., Turner I. Stability and Convergence of a New Explicit Finite-difference Approximation for the Variable-order Nonlinear Fractional Diffusion Equation // Appl. Math. Comput. 2009. V. 212. No 2. P. 435–445.
- Razminia A., Dizaji A.F., Majd V.J. Solution Existence for Nonautonomous Variable-order Fractional Differential Equations // Math. Comput. Model. 2012. V. 55. No 3. P. 1106–1117.
- Zayernouri M., Karniadakis G.E. Fractional Spectral Collocation Methods for Linear and Nonlinear Variable Order FPDEs // J. Comput. Phys. 2015. V. 293. No C. P. 312–338.
- Chen S., Liu F., Burrage K. Numerical Simulation of a New Twodimensional Variable-order Fractional Percolation Equation in Nonhomogeneous Porous Media // Comput. Math. Appl. 2014. V. 68. No 12. P. 2133–2141.
- Zhao X., Sun Z., Karniadakis G.E. Second-order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications // J. Comput. Phys. 2015. V. 293. P. 184–200.
- Cao J., Qiu Y. A High Order Numerical Scheme for Variable Order Fractional Ordinary Differential Equation // Appl. Math. Lett. 2016. V. 61. P. 88–94.
- Sun H., Zhao X., Sun Zh. The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation // J. Scientific Computing. 2019. V. 78. P. 467–498.
- Muthukumar P., Balasubramaniam P., Ratnavelu K. Fast Projective Synchronization of Fractional Order Chaotic and Reverse Chaotic Systems with its Application to an Affine Cipher Using Date of Birth (DOB) // Nonlinear Dynam. 2015. V. 80. No 4. P. 1883–1897.
- Вalasubramaniam P., Muthukumar P., Ratnavelu K. Theoretical and Practical Applications of Fuzzy Fractional Integral Sliding Mode Control for Fractional-order Dynamical System // Nonlinear Dynam. 2015. V. 80. No 1–2. P. 249–267.
- Ge Z., Ou C. Chaos Synchronization of Fractional Order Modified Duffing Systems with Parameters Excited by a Chaotic Signal // Chaos Soliton. Fract. 2008. V. 35. No 4. P. 705–717.
- Muthukumar P., Balasubramaniam P., Ratnavelu K. Synchronization and an Application of a Novel Fractional Order King Cobra Chaotic System // Chaos. 2014. V. 24. No 3 033105.
- Muthukumar P., Balasubramaniam P., Ratnavelu K. Synchronization of a Novel Fractional Order Stretch-twist-fold (STF) Flow Chaotic System and its Application to a New Authenticated Encryption Scheme (AES) // Nonlinear Dynam. 2014. V. 77. No 4. P. 1547–1559.
- Gl¨ockle W.G., Nonnenmacher T.F. A Fractional Calculus Approach to Self-similar Protein Dynamics // Biophys. J. 1995. V. 68. No 1. P. 46–53.
- He G., Luo M. Dynamic Behavior of Fractional Order Duffing Chaotic System and its Synchronization Via Singly Active Control // Appl. Math. Mech. 2012. V. 33. No 5. P. 567–582.
- Wang S., Wu R. Dynamic Analysis of a 5D Fractional-order Hyperchaotic System // Inter. J. Control Autom. Syst. 2017. V. 15. No 3. P. 1003–1010.
- Sun H.G., Chang A., Zhang Y., Chen W. A Review on Variable-Order Fractional Differential Equations: Mathematical Foundations, Physical Models, Numerical Methods And Applications // Fractional Calculus & Applied Analysis. 2019. V. 22. No. 1.
- Kumar P., Chaudhary S.K. Analysis of Fractional Order Control System with Performance and Stability // Intern. J. Eng. Sci. Tech. 2017. V. 9. No 5. P. 408–416.
- Оbembe A.D., Hossain M.E., Abu-Khamsin S.A. Variable-order Derivative Time Fractional Diffusion Model for Heterogeneous Porous Media // J. Petrol. Sci. Eng. 2017. V. 152. P. 391–405.
- Awotunde A.A., Ghanam R.A., Tatar N.E. Artificial Boundary Condition for a Modified Fractional Diffusion Problem. Bound // Value Probl. 2015. No 1. P. 20.
- Cai W., Chen W., Fang J., Holm S. A Survey on Fractional Derivative Modeling of Power-law Frequency-dependent Viscous Dissipative and Scattering Attenuation in Acoustic Wave Propagation // Appl. Mech. Rev. 2018. V. 70. No 3. 030802.
- Jiang S., Zhang J., Qian Z., Zhang Z. Fast Evaluation of the Caputo Fractional Derivative and its Applications to Fractional Diffusion Equations. Commun. Comput // Phys. 2017. V. 21. No 3. P. 650–678.
- Povstenko Y., Klekot J. The Dirichlet Problem for the Time-fractional Advection-diffusion Equation in a Line Segment // Bound. Value Probl. 2016. No 1. P. 89.
- Zhang L., Li S. Regularity of Weak Solutions of the Cauchy Problem to a Fractional Porous Medium Equation // Bound. Value Probl. 2015. No 1. P. 1–6.
- Sweilam N.H., Al-Mekhlafi S.M. Numerical Study for Multi-strain Tuberculosis (TB) Model of Variable-order Fractional Derivatives // J. Adv. Res. 2016. V. 7. No 2. P. 271–283.
- Sun H.G., Chen Y., Chen W. Random-order Fractional Differential Equation Models // Signal Process. 2011. V. 91. No 3. P. 525–530.
- Sun H.G., Chen W., Sheng H., Chen Y. On Mean Square Displacement Behaviors of Anomalous Diffusions with Variable and Random Orders // Phys. Lett. 2010. V. 374. No 7. P. 906–910.
- Sahoo S. K., Gupta V., Dubey Sh. A Robust Higher-order Finite Difference Technique for a Time-fractional Singularly Perturbed Problem // Mathematics and Computers in Simulation. 2024. V. 215. P. 43–68.
- Xu Q., Ma X., Cheng Z., Xiao X., Ma Zh. Numerical Simulation of Conduction Problem with Evaporation Based on a SPH Model Improved by a Fractional Order Convection-diffusion Equation // Engineering Analysis with Boundary Elements. 2023. V. 155. P. 668–681.
- Cтепанов О.А. Основы теории оценивания с приложениями к задачам обработки навигационной информации. Изд. 3-е, исправ. и доп. Ч. 1. Введение в теорию оценивания. Санкт-Петербург: ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», 2017.
- Cтепанов О.А. Основы теории оценивания с приложениями к задачам обработки навигационной информации. Изд. 3-е, исправ. и доп. Ч. 2. Введение в теорию фильтрации. Санкт-Петербург: ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», 2017.
- Stepanov O.A, Amosov O.S., Toropov A.V. Comparison of Kalman-type Algorithms in Nonlinear Navigation Problems for Autonomous Vehicles // IFAC Proceedings Volumes (IFAC-PapersOnline). 2007. V. 6. Pt 1. P. 493–498.
- Haykin S. Kalman Filtering and Neural Networks. N. Y.: John Wiley&Sons. Inc., 2001.
- Sierociuk D., Dzieliński A. Fractional Kalman Filter Algorithm for the States, Parameters and Order of Fractional System Estimation // Intern. J. Applied Mathematics and Computer Science. 2006. V. 16. Iss. 1. P. 129–149.
- Sierociuk D., Macias M. Triple Estimation of Fractional Variable Order, Parameters, and State Variables Based on the Unscented Fractional Order Kalman Filter // Sensors. 2021. V. 21. P. 8159. https://doi.org/10.3390/s21238159.
- Xue G., Xu Y., Guo J., Zhao W. The Fractional Kalman Filter-Based Asynchronous Multirate Sensor Information Fusionи // Hindawi Complexity. Dec. 2018. V. 2018. Article ID1450353. 10 p. https://doi.org/10.1155/2018/1450353.
- Cui Ch., Zhang L., Yan G., Sun X. Track Fusion Fractional Kalman Filter // 41st Chinese Control Conference (CCC). Hefei, China, 2022. No 22507536. P. 6.
- Tripathi R.P., Singh A.K., Gangwar P. Innovation-based Fractional Order Adaptive Kalman Filter // J. Electrical Engineering. 2020. V. 71. No 1. P. 60–64.
- Amosov O.S., Amosova S.G. Peculiarities and Applications of Stochastic Processes with Fractal Properties // Sensors. 2021. V. 21. Iss. 17. № 5960. https://doi.org/10.3390/s21175960.
- Amosov O.S. Peculiarities of Stochastic Processes with Fractal Properties and Their Applications in Problems of Navigation Information Processing // 25th Saint Petersburg Intern. Conf. on Integrated Navigation Systems (ICINS2018). Proceedings. Saint Petersburg, 2018. P. 1–5. https://doi.org/10.23919/ICINS.2018.8405867.
- Amosov O.S., Baena S.G. Wavelet Based Filtering of Mobile Object Fractional Trajectory Parameters // 13th IEEE Intern. Conf. on Control and Automation (ICCA). Ohrid, 2017. № 8003045. P. 118–123. https://doi.org/10.1109/ICCA.2017.8003045.
- Aмосов О.С., Баена С.Г. Выявление и оценивание динамических процессов с фрактальной структурой применительно к задачам обработки навигационной информации //ХIX конф. молодых ученых с международным участием. Навигация и управление движением. Санкт-Петербург: Концерн «ЦНИИ «Электроприбор», 2017. С. 124–126.
- Aмосов О.С., Амосова С.Г. Оценивание состояния и параметров дробных динамических систем с использованием дробных фильтров калмановского типа // Матер. ХХХIII конф. памяти выдающегося конструктора гироскопических приборов Н. Н. Острякова. 15-я мультиконф. по проблемам управления. Санкт-Петербург: Концерн «ЦНИИ «Электроприбор», 2022. С. 96–99.
- Aмосов О.С., Амосова С.Г. Дробные фильтры калмановского типа для оценивания состояния, параметров и порядка дробной динамической системы в задачах обработки навигационной информации // Юбилейная XXX Санкт-Петербургская междунар. конф. по интегрированным навигационным системам: сборник материалов. Санкт-Петербург: «Концерн «ЦНИИ «Электроприбор», 2023. С. 139–142.
补充文件
