A method for estimating the number of regolith particles in a dust cloud in a discharge initiated by gyrotron radiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article proposes a new method for estimating the number of particles in experiments on modeling the interaction of cosmic and lunar dust with the surface of spacecraft. The experiments are based on the creation of a dusty plasma cloud, when exposed to radiation from a powerful pulsed gyrotron on a substance simulating cosmic or lunar dust. This approach was tested using a lunar regolith simulator. The dynamics of particles in dust clouds obtained as a result of microwave discharge is analyzed using the ImageJ program.

Sobre autores

A. Sokolov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: dmc63@yandex.ru
Rússia, Moscow

Т. Gayanova

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Rússia, Moscow

А. Kozak

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Rússia, Moscow

D. Malakhov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Rússia, Moscow

I. Nugaev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Rússia, Moscow

D. Kharlachev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Rússia, Moscow

V. Stepakhin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: dmc63@yandex.ru
Rússia, Moscow

Bibliografia

  1. T. E. Gayanova, E. V. Voronova, S. V. Kuznetsov, E. A. Obraztsova, N.N. Skvortsova, A. S. Sokolov, I. R. Nugaev and V.D. Stepakhin, High Energy Chem. 57, 1, 53 (2023).
  2. N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin et al., Chem. Phys. 516, 63 (2019).
  3. S. I. Popel, L. M. Zelenyi, A. P. Golub and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).
  4. И. А. Кузнецов, А. В. Захаров, Л. М. Зеленый, С. И. Попель и др., Астрон. журн. 100, 1, 41 (2023).
  5. S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
  6. J. Williams, Journal of Plasma Physics 82(03) (2016).
  7. Y. Zeng, Zh. Ma, Y. Feng, Review of Scientific Instruments, 93 (3) (2022).
  8. Н. Н. Скворцова, В. Д. Степахин, Д. В. Малахов, Л. В. Колик, Е. М. Кончеков, Е. А. Образцова, А. С. Соколов, А. А. Сорокин, Н. К. Харчев и О. Н. Шишилов, Патент №2727958 Российская Федерация, рег. 28 июля 2020 г.
  9. Г. М. Батанов, Н. К. Бережецкая, В. Д. Борзосеков, Л. В. Колики др., Успехи прикладной физики 1, 5, 564 (2013).
  10. А. С. Соколов, Д. В. Малахов и Н.Н. Скворцова, Инженерная физика 11, 3 (2018).
  11. М. В. Тригуб, Д. В. Малахов, В. Д. Степахин, Г. С. Евтушенко, Д. А. Балабанов и Н. Н. Скворцова, Оптика атмосферы и океана 33, 3, 199 (2020).
  12. А. А. Летунов, Н. Н. Скворцова, И. Г. Рябикина, Г. М. Батанов, и др., Инженерная физика 10, 36 (2013).
  13. E.V. Voronova, A. V. Knyazev, A. A. Letunov, V. P. Logvinenko, N. N. Skvortsova, and V. D. Stepakhin, Physics of Atomic Nuclei. 84, 1761 (2021).
  14. ImageJ Independent Platform, https://imagej.nih.gov/ij/

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024