Ob obshchey postanovke zadachi formirovaniya raspisaniya gruzoperevozok i sposobakh ee resheniya

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A new mathematical model of transportation along the transport network represented by an undirected multigraph is formulated. A new criterion for the optimality of cargo carriages schedule is proposed. The criterion in addition to the time characteristics of transportation includes their cost, the number of undelivered cargoes. The problem to find the optimal schedule is formulated as a problem of mixed integer linear programming. Various variants of the algorithm for searching for an approximate solution to the problem are proposed. Informative examples are considered.

About the authors

A. N Ignatov

Moscow Aviation Institute

Author for correspondence.
Email: alexei.ignatov1@gmail.com
Moscow, Russia

References

  1. Mor A., Speranza M.G. Vehicle routing problems over time: a survey // Quart. J. Oper. Res. 2020. V. 18. No. 2. P. 129-149.
  2. Vidal T., Crainic T.G., et. al. A unified solution framework for multi-attribute vehicle routing problems // Eur. J. Oper. Res. 2014. V. 234. No. 3. P. 658-673.
  3. Boctor F.F., Laporte G., Renaud J. Heuristics for the traveling purchaser problem // Comput. Oper. Res. 2003. V. 30. No. 4. P. 491-504.
  4. Cacchiani V., Caprara A., Toth P. A column generation approach to train timetabling on a corridor // 4OR. 2008. V. 6. No. 2. P. 125-142.
  5. Gao Yu., Kroon L., et. al. Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor // Omega. 2018. V. 80. P. 175-191.
  6. Mu S., Dessouky M. Scheduling freight trains traveling on complex networks // Transport. Res. Part B: Methodologic. 2011. V. 45. No. 7. P. 1103-1123.
  7. Forsgren M., Aronsson M., Gestrelius S. Maintaining tracks and traffic flow at the same time // J. Rail Transport Planning Management. 2013. V. 3. No. 3. P. 111-123.
  8. Sama M., D'Ariano A., et. al. A variable neighbourhood search for fast train scheduling and routing during disturbed railway traffic situations // Comput. Oper. Res. 2017. V. 78. P. 480-499.
  9. Meng L., Zhou X. Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables // Transport. Res. Part B: Methodologic. 2014. V. 67. P. 208-234.
  10. Lazarev A.A., Musatova E.G. The problem of trains formation and scheduling: Integer statements // Autom. Remote Control. 2013. V. 74. No. 12. P. 2064-2068.
  11. Архипов Д.И., Лазарев А.А. Минимизация максимального взвешенного временного смещения доставки заказов между двумя железнодорожными станциями // АиТ. 2016. № 12. С. 3-25.
  12. Буянов М.В., Иванов С.В. и др. Развитие математической модели управления грузоперевозками на участке железнодорожной сети с учетом случайных факторов // Информатика и ее применения. 2017. Т. 11. № 4. С. 85-93.
  13. Буянов М.В., Наумов А.В. Оптимизация функционирования подвижного состава при организации грузовых перевозок на участке железнодорожной сети // АиТ. 2018. № 9. С. 143-158.
  14. Гайнанов Д.Н., Игнатов А.Н. и др. О задаче назначения "технологического окна" на участках железнодорожной сети // АиТ. 2020. № 6. С. 3-16.
  15. Ignatov A.N. On the scheduling problem of cargo transportation on a railway network segment and algorithms for its solution // Bull. South Ural State Univer. Ser. Mat. Model. Progr. 2021. V. 14. No. 3. P. 61-76.
  16. Босов А.В., Игнатов А.Н., Наумов А.В. Алгоритмы приближенного решения задачи назначения "технологического окна" на участках железнодорожной сети // Информатика и ее применения. 2021. Т. 15. № 4. С. 3-11.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences