Optimal Retention of the Trajectories of a Discrete-Time Stochastic System in a Tube: One Problem Statement

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper considers an optimal control problem for a time-invariant linear stochastic system with discrete time, scalar unbounded control, additive noise, and a probabilistic criterion for retaining its trajectories in a given neighborhood of zero. We use dynamic programming and two-sided Bellman function estimates to derive analytical expressions for the optimal control at two time steps and a suboptimal control on any control horizon. The effectiveness of these controls is illustrated on a numerical example.

About the authors

A. N Tarasov

Moscow Aviation Institute

Email: tarrapid@gmail.com
Moscow, Russia

V. M Azanov

Moscow Aviation Institute

Email: azanov59@gmail.com
Moscow, Russia

A. I Kibzun

Moscow Aviation Institute

Author for correspondence.
Email: kibzun@mail.ru
Moscow, Russia

References

  1. Малышев В.В., Кибзун А.И. Анализ и синтез высокоточного управления летательными аппаратами. М.: Машиностроение, 1987.
  2. Lesser K., Oishi M., Erwin R. Stochastic reachability for control of spacecraft relative motion // Proc. IEEE Conf. Dec. and Ctrl. 2013. P. 4705-4712.
  3. Kan Y.S. Control Optimization by the Quantile Criterion // Autom. Remote Control. 2001. V. 62. No. 6. P. 746-757.
  4. Azanov V.M., Kan Yu.S. Design of Optimal Strategies in the Problems of Discrete System Control by the Probabilistic Criterion // Autom. Remote Control. 2017. V. 78. No. 6. P. 1006-1027.
  5. Кузьмин В.П., Ярошевский В.А. Оценка предельных отклонений фазовых координат динамической системы при случайных возмущениях. М.: Наука, 1995.
  6. Soudjani S., Abate A. Probabilistic reach-avoid computation for partially degenerate stochastic processes // IEEE Trans. Autom. Ctrl. IEEE Trans. Autom. Ctrl., 2014. V. 59. No. 2. P. 528-534.
  7. Summers S., Lygeros J. Verification of discrete time stochastic hybrid systems: A stochastic reach-avoid decision problem // Automatica. 2010. V. 46. No. 12. P. 1951-1961.
  8. Vinod A., Oishi M. Scalable underapproximation for the stochastic reach-avoid problem for highdimensional LTI systems using Fourier transforms // IEEE Lett.-Contr. Syst. Soc. 2017. V. 1. No. 2. P. 316-321.
  9. Jasour A.M., Aybat N.S., Lagoa C.M. Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets // SIAM J. Optimization. 2015. V. 25. No. 3. P. 1411-1440.
  10. Jasour A.M., Lagoa C.M. Convex constrained semialgebraic volume optimization: Application in systems and control. arXiv:1701.08910, 2017.
  11. Grigor'ev P.V., Kan Y.S Optimal Control of the Investment Portfolio with Respect to the Quantile Criterion // Autom. Remote Control. 2004. V. 65. No. 2. P. 319-336.
  12. Bunto T.V., Kan Y.S. Quantile criterion-based control of the securities portfolio with a nonzero ruin probability // Autom. Remote Control. 2013. V. 74. No. 5. P. 811-828.
  13. Maidens J.N., Kaynama S., Mitchell I.M., Oishi M.M., Dumont G.A. Lagrangian methods for approximating the viability kernelin high-dimensional systems // Automatica. 2013. V. 49. No. 7. P. 2017-2029.
  14. Kariotoglou N., Raimondo D.M., Summers S., Lygeros J. Astochastic reachability framework for autonomous surveillance withpan-tilt-zoom cameras // Proc. European Ctrl. Conf. 2011. P. 1411-1416.
  15. Doyen L., De Lara M. Stochastic viability and dynamic programming // Systems and Control Letters. 2010. V. 59. No. 10. P. 629-634.
  16. Кибзун А.И., Иванов С.В., Степанова А.С. Построение доверительного множества поглощения в задачах анализа статических стохастических систем // АиТ. 2020. № 4. С. 21-36.
  17. Azanov V.M., Kan Yu.S. Bilateral Estimation of the Bellman Function in the Problems of Optimal Stochastic Control of Discrete Systems by the Probabilistic Performance Criterion // Autom. Remote Control. 2018. V. 79. No. 2. P. 203-215.
  18. Azanov V.M., Kan Yu.S. Refined Estimation of the Bellman Function for Stochastic Optimal Control Problems with Probabilistic Performance Criterion // Autom. Remote Control. 2019. V. 90. No. 4. P. 634-647.
  19. Vinod A.P., Oishi M.M. Stochastic reachability of a target tube: Theory and computation // Automatica. 2021. V. 125.
  20. Афанасьев В.Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления. М.: Высш. шк., 2003.
  21. Azanov V.M., Tarasov A.N. Probabilistic criterion-based optimal retention of trajectories of a discrete-time stochastic system in a given tube: bilateral estimation of the Bellman function // Autom. Remote Control. 2020. V. 81. P. 1819-1839.
  22. Konrad Schmudgen. The moment problem. Vol. 9. Springer, 2017.
  23. Azanov V.M., Kan Yu.S. On Optimal Retention of the Trajectory of Discrete Stochastic System in Tube // Autom. Remote Control. 2019. V. 80. No. 1. P. 30-42.
  24. Кан Ю.С., Кибзун А.И. Задачи стохастического программирования с вероятностными критериями. М.: ФИЗМАТЛИТ, 2009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences