Abstract
Исследуются бифуркации граничного столкновения («border-collision bifurcations») в кусочно-гладком отображении, описывающем поведение импульсной системы автоматического управления. Показано, что в области колебательных движений такое отображение является кусочнолинейным непрерывным. Известно, что в кусочно-линейных отображениях классические бифуркации, например бифуркация удвоения периода, касательная и вилообразная бифуркации, становятся вырожденными («degenerate bifurcations»), сочетая свойства как гладких, так и бифуркаций граничного столкновения. Выявлены необычные свойства рассматриваемого класса динамических систем, проявляющиеся в том, что бифуркации граничного столкновения коразмерности один, включая и вырожденные, происходят, когда пара точек периодической орбиты одновременно сталкивается с двумя многообразиями переключения. Численно и аналитически изучены бифуркации «слияния» («merging»), «расширения» («expansion»), связанные с гомоклиническими бифуркациями неустойчивых периодических орбит.