The Use of Cholesterol/Randomly Methylated β-Cyclodextrin (RAMEB) Inclusion Complexes to Improve Human Spermatozoa Cryosurvival
- Authors: Mironova A.G1,2, Afanasyeva S.I3, Yakovenko S.A3, Tikhonov A.N2,3, Simonenko E.Y.3
-
Affiliations:
- Human Reproduction Clinic “Altravita”
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- M.V. Lomonosov Moscow State University
- Issue: Vol 69, No 6 (2024)
- Pages: 1390-1401
- Section: Medical biophysics
- URL: https://ruspoj.com/0006-3029/article/view/676194
- DOI: https://doi.org/10.31857/S0006302924060249
- EDN: https://elibrary.ru/NJBHOH
- ID: 676194
Cite item
Abstract
About the authors
A. G Mironova
Human Reproduction Clinic “Altravita”; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: agm90@mail.ru
Moscow, Russia
S. I Afanasyeva
M.V. Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
S. A Yakovenko
M.V. Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
A. N Tikhonov
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; M.V. Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
E. Yu Simonenko
M.V. Lomonosov Moscow State UniversityFaculty of Physics Moscow, Russia
References
- Royere D., Barthelemy C., Hamamah S., and Lansac J. Cryopreservation of spermatozoa: a 1996 review. Hum. Reprod. Update, 2, 553-559 (1996). doi: 10.1093/HUMUPD/2.6.553
- Polge C., Smith A. U., and Parkes A. S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 164, 666-666 (1949). doi: 10.1038/164666a0
- Bunge R. G. and Sherman J. K. Fertilizing capacity of frozen human spermatozoa. Nature, 172, 767-768 (1953). doi: 10.1038/172767b0
- Rodriguez-Wallberg K. A., Waterstone M., and Anastácio A. Ice age: Cryopreservation in assisted reproduction - An update. Reprod. Biol., 19, 119-126 (2019). doi: 10.1016/J.REPBIO.2019.04.002
- McBride A. J. and Lipshultz L. I. Male fertility preservation. Curr. Urology Rep., 19 (7), 49 (2018). doi: 10.1007/s11934-018-0803-2
- Moore K. J., Delgado C., and Ory J. Fiertility preservation in uro-oncology. Curr. Opin. Support Palliat. Care, 16, 230-233 (2022). doi: 10.1097/SPC.0000000000000621
- Hughes G. and da Silva M. S. Sperm cryopreservation for impaired spermatogenesis. Reproduction & fertility, 4 (1), e220106 (2022). Advance online publication. doi: 10.1530/RAF-22-0106
- Liu S. and Li F. Cryopreservation of single-sperm: where are we today? Reprod. Biol. Endocrinol., 18 (1), 41 (2020). doi: 10.1186/S12958-020-00607-X
- Guidance regarding gamete and embryo donation (American Society for Reproductive Medicine, 2021).
- Ozimic S., Ban-Frangez H., and Stimpfel M. Sperm cryopreservation today: approaches, efficiency, and pitfalls. Curr. Issues Mol. Biol., 45, 4716-4734 (2023). doi: 10.3390/CIMB45060300
- Kunkitti P., Chatdarong K., Suwimonteerabutr J., Nedumpun T., Johannisson A., Bergqvist A. S., Sjunnesson Y., and Axnér E. Osmotic tolerance of feline epididymal spermatozoa. Anim. Reprod. Sci., 185, 148-153 (2017). doi: 10.1016/J.ANIREPROSCI.2017.08.014
- Yashaswi S. and Mona S. Biophysics of cryopreservation. Int. J. Thermodynamics, 25, 17-27 (2022). doi: 10.5541/IJOT.925283
- Morris J. G., Acton E., Murray B. J., and Fonseca F. Freezing injury: the special case of the sperm cell. Cryobiology, 64, 71-80 (2012). doi: 10.1016/J.CRYOBIOL.2011.12.002
- Белоус А. М. и Грищенко В. И. Криобиология (Наукова думка, 1994).
- Quinn P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology, 22, 128-146 (1985). doi: 10.1016/0011-2240(85)90167-1
- Ilieva A., Ivanov A. G., Kovachev K., Richter H. P. Cryodamage in ram sperm plasma membranes. Energy transfer and freeze-fracture studies. J. Electroanalyt. Chem., 342, 41-44 (1992). doi: 10.1016/0022-0728(92)85033-Y
- Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol., 247 (3), 125-142 (1984). doi: 10.1152/AJPCELL.1984.247.3.C125
- van Blitterswijk W. J., Hilkmann H., and van der Meer B. W. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry, 26, 1746-1756 (1987). doi: 10.1021/BI00380A038
- Yeagle P. L. Cholesterol and the cell membrane. Biochim. Biophys. Acta, 822, 267-287 (1985). doi: 10.1016/0304-4157(85)90011-5
- Tilcock C. P. S., Bally M. B., Farren S. B., Cullis P. R., and Gruner S. M. Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition. Biochemistry, 23, 2696-2703 (1984). doi: 10.1021/BI00307A025
- Cohen R., Mukai C., and Travis A. J. Lipid regulation of acrosome exocytosis. Adv. Anat. Embryol. Cell Biol., 220, 107-127 (2016). doi: 10.1007/978-3-319-30567-7_6
- Abouhaila A. and Tulsiani D. R. P. Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch. Biochem. Biophys., 485, 72-81 (2009). doi: 10.1016/J.ABB.2009.02.003
- Darin-Bennett A. and White I. G. Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology, 14, 466-470 (1977). doi: 10.1016/0011-2240(77)90008-6
- Purdy P. H. and Graham J. K. Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm. Cryobiology, 48, 36-45 (2004). doi: 10.1016/j.cryobiol.2003.12.001
- Mocé E. and Graham J. K. Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival. J. Anim. Sci., 84, 826-833 (2006). doi: 10.2527/2006.844826X
- Combes G. B., Varner D. D., Schroeder F., Burghardt R. C., and Blanchard T. L. Effect of cholesterol on the motility and plasma membrane integrity of frozen equine spermatozoaafterthawing. J. Reprod. Fertil. Suppl., 56, 127-132 (2000). PMID: 20681124
- Moore A. I., Squires E. L., and Graham J. K. Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival. Cryobiology, 51, 241-249 (2005). doi: 10.1016/J.CRYOBIOL.2005.07.004
- Uekama K., Hirayama F., and Irie T. Cyclodextrin drug carrier systems. Chem. Rev., 98, 2045-2076 (1998). doi: 10.1021/CR970025P
- Huang Z. and London E. Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir, 29, 14631-14638 (2013). doi: 10.1021/LA4031427
- Lipkowitz K. B. Applications of computational chemistry to the study of cyclodextrins. Chem. Rev., 98, 1829-1873 (1998). doi: 10.1021/CR9700179
- Davis M. E. and Brewster M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov., 3, 1023-1035 (2004). doi: 10.1038/NRD1576
- Szente L. and Fenyvesi É. Cyclodextrin-lipid complexes: cavity size matters. Struct. Chem., 28, 479-492 (2017). doi: 10.1007/S11224-016-0884-9/METRICS
- Ohtani Y., Irie T., Uekama K., Fukunaga K., and Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem., 186,17-22 (1989). doi: 10.1111/J.1432-1033.1989.TB15171.X
- Tsamaloukas A., Szadkowska H., Slotte P. J., and Heerklotz H. Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys. J., 89,1109-1119 (2005). doi: 10.1529/BIOPHYSJ.105.061846
- Christoforides E., Papaioannou A., and Bethanis K. Crystal structure ofthe inclusion complex of cholesterol in ß-cyclodextrin and molecular dynamics studies. Beilstein J. Org. Chem., 14, 838-848 (2018). doi: 10.3762/BJOC.14.69
- Jozwiakowski M. J. and Connors K. A. Aqueous solubility behavior of three cyclodextrins. Carbohydr. Res., 143, 5159 (1985). doi: 10.1016/S0008-6215(00)90694-3
- Szente L. and Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. DrugDeliv. Rev., 36,17-28 (1999). doi: 10.1016/S0169-409X(98)00092-1
- Szejtli J. Dimethyl-ß-cyclodextrin as parenteral drug carrier. J. Inclusion Phenomena, 1, 135-150 (1983). doi: 10.1007/BF00656816
- Spencer C. M., Stoddart J. F., and Zarzycki R. Structural mapping of an unsymmetrical chemically modified cyclodextrin by high-field nuclear magnetic resonance spectroscopy. J. Chem. Soc., Perkin Trans. 2, No 9, 1323-1336 (1987). doi: 10.1039/P29870001323
- Process for the preparation of alkylated cyclodextrin derivatives, methylated cyclodextrin derivatives which can be prepared by the process and the use ofthe products. Patent № DE4333598A1
- WHO laboratory manual for the examination and processing ofhumansemen. World Health Organization, 6,1276 (2021)
- Christian A. E., Haynes M. P., Phillips M. C., and Rothblat G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res., 38, 2264-2272 (1997). doi: 10.1016/S0022-2275(20)34940-3
- Kilsdonk E. P. C., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., and Roth-blat G. H. Cellular cholesterol efflux, mediated by cyclodextrins. J. Biol. Chem., 270, 17250-17256 (1995). doi: 10.1074/JBC.270.29.17250
- Castagne D., Fillet M., Delattre L., Evrard B., Nusgens B., and Piel G. Study of the cholesterol extraction capacity of ß-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models. J. Incl. Phenom. Macrocycl. Chem., 63, 225-231 (2009). doi: 10.1007/S10847-008-9510-9/METRICS
- Kiss T., Fenyvesi F., Bácskay I., Váradi J., Fenyvesi É., Iványi R., Szente L., TósakiÁ., andVecsernyés M. Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur. J. Pharm. Sci., 40, 376-380 (2010). doi: 10.1016/J.EJPS.2010.04.014
- Piel G., Piette M., Barillaro V., Castagne D., Evrard B., and Delattre L. Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity ofliposomes. Int. J. Pharm, 338, 35-42 (2007). doi: 10.1016/J.IJPHARM.2007.01.015
- Wenz G. Influence of intramolecular hydrogen bonds on the binding potential of methylated ß-cyclodextrin derivatives. Beilstein J. Org. Chem.,8, 1890-1895 (2012). doi: 10.3762/BJOC.8.218
- Fenyvesi É., Szemán J., Csabai K., Malanga M., and Szente L. Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J. Pharm. Sci., 103,1443-1452 (2014). doi: 10.1002/JPS.23917
- Sheetz M. P. and Singer S. J. Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J. Cell Biol., 70, 247-251 (1976). doi: 10.1083/JCB.70.1.247
- Cassera M. B., Silber A. M., and Gennaro A. M. Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study. Biophys. Chem., 99, 117-127 (2002). https://doi.org/10.1016/S0301-4622(02)00139-4
- Moore A. I., Squires E. L., and Graham J. K. Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival. Cryobiology, 51, 241-249 (2005). https://doi.org/10.1016/J.CRYOBIOL.2005.07.004
- Mocé E. and Graham J. K. Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival. J. Anim. Sci., 84, 826-833 (2006). doi: 10.2527/2006.844826X
- Subczynski W. K., Pasenkiewicz-Gierula M., Widomska J., Mainali L., and Raguz M. High cholesterol/low cholesterol: Effects in biological membranes: a review. Cell Biochem. Biophys., 75, 369-385 (2017). doi: 10.1007/S12013-017-0792-7
- Joset A., Grammenos A., Hoebeke M., and Leyh B. Investigation of the interaction between a ß-cyclodextrin and DMPC liposomes: A small angle neutron scattering study. J. Incl. Phenom. Macrocycl. Chem., 83, 227-238 (2015). doi: 10.1007/S10847-015-0558-Z/METRICS
- Mocé E., Purdy P. H., and Graham J. K. Treating ram sperm with cholesterol-loaded cyclodextrins improves cryosurvival. Anim. Reprod. Sci., 118, 236-247 (2010). doi: 10.1016/J.ANIREPROSCI.2009.06.013
- Murphy C., English A. M., Holden S. A., and Fair S. Cholesterol-loaded-cyclodextrins improve the post-thaw quality of stallion sperm. Anim. Reprod. Sci., 145, 123-129 (2014). doi: 10.1016/J.ANIREPROSCI.2014.01.013
- Spizziri B. E., Fox M. H., Bruemmer J. E., Squires E. L., and Graham J. K. Cholesterol-loaded-cyclodextrins and fertility potential of stallions spermatozoa. Anim. Reprod. Sci., 118, 255-264 (2010). doi: 10.1016/J.ANIREPROSCI.2009.08.001
- da Cardoso L. M. F., Pinto M. A., Pons H. A., and Alves L. A. Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology, 78, 15-21 (2017). doi: 10.1016/J.CRYOBIOL.2017.07.010
- Uchida T., Nagayama M., Shibayama T., and Gohara K. Morphological investigations of disaccharide molecules for growth inhibition of ice crystals. J. Crystal Growth, 299(1), 125-135 (2007). doi: 10.1016/j.jcrysgro.2006.10.261
- Solocinski J., Osgood Q., Wang M., Connolly A., Menze M. A., and Chakraborty N. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism. Cryobiology, 75, 134-143 (2017). doi: 10.1016/J.CRYOBIOL.2017.01.001
- Wang G. M. and Haymet A. D. J. Trehalose and other sugar solutions at low temperature: modulated differential scanning calorimetry (MDSC). J. Phys. Chemistry B, 102, 5341-5347 (1998). doi: 10.1021/JP980942E
Supplementary files
