Influence of Low-Energy High-Current Electron Beam Exposure on the Phase Composition and Corrosion Resistance of the AM60 Magnesium Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The surface of an AM60 (Al – 5.5, Zn – 0.2, Cu – 0.009, Fe – 0.005, Si – 0.1; Ni – 0.002, Mn – 0.3 wt.%, Mg – the rest) magnesium alloy was exposed to a low-energy high-current electron beam. After the irradiation, the content of the β-phase (Mg17Al12) decreases and the aluminum content increases in the alloy surface layer. After the exposure to the electron beam, the corrosion resistance of the alloy in a 1-molar NaCl solution increases significantly compared to the initial state. The physical reason for the increase in the alloy corrosion resistance after exposure to the electron beam is the higher corrosion resistance of the oxide film formed on the alloy surface due to the increased aluminum content.

Full Text

Restricted Access

About the authors

K. O. Akimov

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: akimov_ko@ispms.ru
Russian Federation, Tomsk, 634055

K. V. Ivanov

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: akimov_ko@ispms.ru
Russian Federation, Tomsk, 634055

M. G. Figurko

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: akimov_ko@ispms.ru
Russian Federation, Tomsk, 634055

References

  1. Tan J., Ramakrishna S. Applications of magnesium and its alloys: a review // Appl. Sci. 2021. V. 11. № 15. article number 6861. https://doi.org/10.3390/app11156861
  2. Prasad S.V., Prasad S.B., Verma K., Mishra R.K., Kumar V., Singh S. The role and significance of Magnesium in modern day research-A review // J. Magnes. Alloy. 2022. V. 10. № 1. P. 1–61. https://doi.org/10.1016/j.jma.2021.05.012
  3. Захаров А.М. Промышленные сплавы цветных металлов. Фазовый состав и структурные составляющие. М.: Металлургия, 1980. 256 с.
  4. Esmaily M., Svensson J.E., Fajardo S., Birbilis N., Frankel G.S., Virtanen S., Arrabal R., Thomas S., Johansson L.G. Fundamentals and advances in magnesium alloy corrosion // Prog. Mater. Sci. 2017. V. 89. P. 92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011
  5. Gao B., Hao S. Improvement of wear resistance of Mg alloy AZ91HP by high current pulsed electron beam treatment // Trans. Mater. Heat Treat. 2004. V. 25. P. 1029–1031.
  6. Wu P.P., Deng K.K., Nie K.B., Zhang Z.Z. Corrosion Resistance of AZ91 Mg Alloy Modified by High-Current Pulsed Electron Beam // Acta Metall. Sin. (Engl. Lett.). 2019 V. 32. № 2. P. 218–226. https://doi.org/10.1007/s40195-018-0798-1
  7. Hao S., Li M. Producing nano-grained and Al-enriched surface microstructure on AZ91 magnesium alloy by high current pulsed electron beam treatment // Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. 2016. V. 375. № 3. P. 1–4. https://doi.org/10.1016/j.nimb.2016.03.035
  8. Li M.C., Hao S.Z., Wen H., Huang R.F. Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment // Appl. Surf. Sci. 2014. V. 303. P. 350–353. https://doi.org/10.1016/j.apsusc.2014.03.004
  9. Ye H., Chen R., Yan Z.L. Effect of electron beam treatment on the surface properties of AZ31B Mg alloy // Adv. Mater. Res. 2012. V. 424–425. P. 1016–1019. https://doi.org/10.4028/www.scientific.net/amr.424–425.1016
  10. Lee W.J., Kim J., Park H.W. Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation. J. Mater. Sci. Technol. 2019. V. 35(5). P. 891–901. https://doi.org/10.1016/j.jmst.2018.12.004
  11. Ротштейн В.П., Проскуровский Д.И., Озур Г.Е., Иванов Ю.Ф. Модификация поверхностных слоев металлических материалов низкоэнергетическими сильноточными электронными пучками. Новосибирск: Наука, 2019. 320 с.
  12. Morini F., Bestetti M., Franz S., Vicenzo A., Markov A., Yakovlev E. Surface properties modification of magnesium alloys by low energy high current pulsed electron beam // Surf. Coat. Technol. 2021. V. 420. article number 127351. https://doi.org/10.1016/j.surfcoat.2021.127351
  13. Озур Г.Е., Проскуровский Д.И. Источники низкоэнергетических сильноточных электронных пучков с плазменным анодом. Новосибирск: Наука, 2018. 176 с.
  14. Proskurovsky D.I., Rotshtein V.P., Ozur G.E., Markov A.B., Nazarov D.S., Shulov V.A., Ivanov Yu.F., Buchheit R.G. Pulsed electron-beam technology for surface modification of metallic materials // J. Vac. Sci. Technol. A. 1998. V. 16. P. 2480–2488. https://doi.org/10.1116/1.581369
  15. Azadi M., Rezanezhad S., Ali S., Talesh A., Ivanov K., Teresov A. The effect of pulsed electron beam irradiation on surface characteristics of AM60 magnesium alloy Prog // Phys. Sppl. 2021. V. 1. P. 63–73. https://doi.org/10.22075/PPAM.2021.24156.1012
  16. Azadi M., Ivanov K., Rezanezhad S., Ali S., Talesh A. Scanning and transmission electron microscopy analysis for surface-modified AM60 magnesium alloy by pulsed electron beam irradiation // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2022. V. 513. P. 9–13. https://doi.org/10.1016/j.nimb.2021.12.014
  17. Wu W., Yin H., Zhang H., Kang J., Li Y., Dan Y. Electrochemical Investigation of Corrosion of X80 Steel under Elastic and Plastic Tensile Stress in CO2 Environment // Metals. 2018. V. 8. № 11. article number 949. https://doi.org/10.3390/met8110949
  18. Chen J., Wang J., Han E., Dong J., Ke W. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulphate solution // Electrochim. Acta. 2007. V. 52. article number 3299. https://doi.org/10.1149/1.1415722
  19. Meng Y., Gao H., Jiaqi H., Gao L. Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy // J. Mater. Res. 2019. V. 34(6). P. 1054–1063. https://doi.org/10.1557/jmr.2018.489
  20. Du H., Ren X., Pan D., An Y., Wei Y., Liu X., Hou L., Liu B., Liu M., Guo Z. Effect of phosphating solution pH value on the formation of phosphate conversion coatings for corrosion behaviors on AZ91D // Adv. Compos. Hybrid Mater. 2021. V. 4. P. 401–414. https://doi.org/10.1007/s42114-021-00222-3
  21. Metalnikov P., Ben-Hamu G., Shin K.S., Eliezer A. Effect of Ca Addition on Corrosion Behavior of Wrought AM60 Magnesium Alloy in Alkaline Solutions // Metals. 2021. V. 11. article number 1172. https://doi.org/10.3390/met11081172

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM image of the alloy surface indicating the areas of MRSA. The black arrow marks the β-phase, the white arrow marks the α-phase.

Download (162KB)
3. Fig. 2. SEM images of the alloy surface after exposure to NSEP at low (a) and high (b) magnification.

Download (310KB)
4. 3. Diffractograms of the alloy in the initial state and after exposure to NSEP in the range of 2θ: 30°-120° (a) and 35°-45° (b).

Download (265KB)
5. 4. Nyquist graphs obtained with different exposure times in the alloy electrolyte: a – 30 min, b – 120 min and the corresponding equivalent scheme (c).

Download (287KB)
6. 5. Potentiodynamic curves obtained for the alloy before and after exposure to HCEP at different exposure times in the electrolyte solution.

Download (121KB)
7. Fig. 6. SEM images of the alloy surface after corrosion tests: a, b – before and after exposure to HCEP at 30 min exposure in electrolyte solution; c, d – before and after exposure to HCEP at 120 min exposure.

Download (752KB)
8. Fig. 7. SEM images of cross-sections of alloy samples after corrosion tests: a, b – before and after exposure to HCEP at 30 min exposure in electrolyte solution; c, d – before and after exposure to HCEP at 120 min exposure.

Download (378KB)