Buffer layer effect on the structure, morphology, and magnetic properties of Mn5Ge3 films synthesized on Si(111) substrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the MnxGey buffer layer on the morphology, transport and magnetic properties of Mn5Ge3 thin films grown on substrates Si(111) has been studied. Using X-ray diffraction analysis and atomic force microscopy, it has been found that changing the thickness and structure of the buffer layer with a gradient MnxGey composition has made it possible to control the crystalline quality and smoothness of epitaxial films. Changes in the microstructure and surface roughness has not affected the temperature of the phase transitions revealed from the temperature dependences of the resistivity and magnetization at 75 and 300 K. It has been shown that the features of the magnetization curve shape for films with different buffer layers have been closely related to the inhomogeneity of the films in thickness and surface roughness while maintaining the micromagnetic constants and orientation of the easy magnetization axis. The value of the change in the magnetic part of entropy ΔS has been calculated to be 2.1 J kg–1 K–1 at 1 T, which is comparable with the value for gadolinium and exceeds that for Mn5Ge3(001) films grown on GaAs substrates.

Full Text

Restricted Access

About the authors

M. V. Rautskii

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Author for correspondence.
Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

A. V. Lukyanenko

Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

S. V. Komogortsev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Reshetnev Siberian State University of Science and Technology

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

I. A. Sobolev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

L. V. Shanidze

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

I. A. Bondarev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

M. A. Bondarev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

E. V. Eremin

Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University; Reshetnev Siberian State University of Science and Technology

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk; Krasnoyarsk

I. A. Yakovlev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

A. L. Sukhachev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

M. S. Molokeev

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

L. A. Solovyov

Institute of Chemistry and Chemical Technology of the Siberian Branch of the RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

S. N. Varnakov

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

S. G. Ovchinnikov

Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

N. V. Volkov

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk

A. S. Tarasov

Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University

Email: taras@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Žutić I., Fabian J., Sarma S.D. Spintronics: Fundamentals and applications // Rev. Mod. Phys. 2004. V. 76(2). P. 323.
  2. Ustinov V.V., Yasyulevich I.A., Bebenin N.G. Playing Pure Spin Current in Helimagnets: Toward Chiral Spin-Orbitronics // Phys. Met. Metal. 2023. V. 124(14). P. 1745–1767.
  3. Bhatti S., Sbiaa R., Hirohata A., Ohno H., Fukami S., Piramanayagam S.N. Spintronics based random access memory: A review // Mater. Today. 2017. V. 20. P. 530–548.
  4. Jansen R. Silicon spintronics // Nat. Mater. 2012. V. 11. P. 400–408.
  5. Liu W., Wong P.K.J., Xu Y. Hybrid spintronic materials: Growth, structure and properties // Prog. Mater. Sci. 2019. V. 99. P. 27–105.
  6. Bebenin N.G. Spin Diffusion and Oscillations of the Magnetization at High-Frequency Spin Injection // JETP Letters. 2023. V. 118(5). P. 336–338.
  7. Izmozherov I.M., Baikenov E.Z., Zverev V.V. Transformations of the Domain-Wall Fine Structure in the Course of Magnetization Change Processes in Co (0001) Film // Phys. Met. Metal. 2021. V. 122(3). P. 213–222.
  8. Fomin L.A., Malikov I.V., Berezin V.A. Magnetoresistance of Co2FeAl Films on the A-Plane of Sapphire // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2022. V. 16(2). P. 448–452.
  9. Tarasov A.S., Rautskii M.V., Lukyanenko A.V., Volochaev M.N., Eremin E.V., Korobtsov V.V., Balashev V.V., Vikulov V.A., Solovyov L.A., Volkov N.V. Magnetic, transport, and magnetotransport properties of the textured Fe3O4 thin films reactively deposited onto SiO2/Si // J. Alloys Compd. 2016. V. 688. P. 1095–1100.
  10. Edelman I., Esters M., Johnson D.C., Yurkin G., Tarasov A., Rautsky M., Volochaev M., Lyashchenko S., Ivantsov R., Petrov D., Solovyov L.A. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films // J. Magn. Magn. Mater. 2016. V. 443. P. 107–115.
  11. Balashev V.V., Ermakov K.S., Samardak K.S., Ognev A.V., Samardak A.V., Komogortsev A.V., Volochaev M.N., Tarasov A.S., Korobtsov A.S. Crystal texture-dependent magnetic and magnetotransport properties of half-metallic Fe3O4 films grown on oxidized Si substrates by reactive deposition // Phys. Rep. 2020. V. 815. P. 152398.
  12. Marchenkov V.V., Irkhin V.Y. Half-Metallic Ferromagnets, Spin Gapless Semiconductors, and Topological Semimetals Based on Heusler Alloys: Theory and Experiment // Phys. Metals Metal. 2021. V. 122. P. 1133–1157.
  13. Buchelnikov V.D., Baigutlin D.R., Sokolovskiy V.V., Miroshkina O.N. The Influence of Exchange Correlation Effects on the Stabilization of the Half-Metallic Properties of Mn2VAl and Mn2VSi Alloys // Phys. Metals Metallogr. 2023. V. 124. P. 118–125.
  14. Samardak A.S., Kolesnikov A.G., Davydenko A.V., Steblii M.E., Ognev A.V. Topologically Nontrivial Spin Textures in Thin Magnetic Films // Phys. Metals Metallogr. 2022. V. 123. P. 238–260.
  15. Chaala R., Bensaid D., Doumi D., Hebri S., Bouzouira N., Azzaz Y. The Preservation of the Half-Metallicity during the Substitution of Manganese in Ba1−xMnxO Alloy // Phys. Met. Metal. 2021. V. 122. P. 1272–1278.
  16. Tarasov A.S., Lukyanenko A.V., Tarasov I.A., Bondarev I.A., Smolyarova T.E., Kosyrev N.N., Komarov V.A., Yakovlev I.A., Volochaev M.N., Solovyov L.A., Shemukhin A.A. Approach to form planar structures based on epitaxial Fe1−xSix films grown on Si (111) // Thin Solid Films. 2017. V. 642. P. 20–24.
  17. Tarasov A.S., Bondarev I.A., Rautskii M.V., Lukyanenko A.V., Tarasov I.A., Varnakov S.N., Ovchinnikov S.G., Volkov N.V. Room Temperature Spin Accumulation Effect in Boron Doped Si Created by Epitaxial Fe3Si/p-Si Schottky Contact // J. Surf. Investig. 2018. V. 12. P. 633–637.
  18. Tarasov A.S., Lukyanenko A.V., Bondarev I.A., Rautskii M.V., Baron F.A., Smolyarova T.E., Yakovlev I.A., Varnakov S.N., Ovchinnikov S.G., Volkov N.V. Fabrication and DC/AC Characterization of 3-Terminal Ferromagnet/Silicon Spintronics Devices // J. Semiconductors. 2018. V. 52. P. 1875–1878.
  19. Tarasov A.S., Lukyanenko A.V., Rautskii M.V., Bondarev I.A., Smolyakov D.A., Tarasov I.A., Yakovlev I.A., Varnakov S.N., Ovchinnikov S.G., Baron F.A. and Volkov N.V. Spin-dependent electrical hole extraction from low doped p-Si via the interface states in a Fe3Si/p-Si structure // Semicond. Sci. Technol. 2019. V. 34(3). P. 035024.
  20. Тарасов А.С., Лукьяненко А.В., Бондарев И.А., Яковлев И.А., Варнаков С.Н., Овчинников С.Г., Волков Н.В. Эффект спиновой аккумуляции в эпитаксиальной структуре Fe3 Si/n-Si и влияние на него электрического смещения // Письма в ЖТФ. 2020. V. 46(13). P. 43–46.
  21. Nikonov D.E., Young I.A. Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking // Proc. IEEE 2013. V. 101. P. 2498–2533.
  22. Spiesser A., Saito H., Jansen R., Yuasa S., Ando K. Large spin accumulation voltages in epitaxial Mn5Ge3 contacts on Ge without an oxide tunnel barrier // Phys. Rev. B. 2014. V. 90. P. 205–213.
  23. Kim Y., Kang K.H., Kim J.H., Kim E.J., Choi K., Han W.B., Kim H.S., Oh Y., Yoon C.S. Magnetocaloric refrigerant with wide operating temperature range based on Mn5−xGe3 (Co, Fe)x composite // J. Alloys Compd. 2015. V. 644. P. 464.
  24. Zheng T.F., Shi Y.G., Fan J.Y., Shi D.N., Tang S.L., Lv L.Y., Zhong W. Critical behavior and the universal curve for magnetocaloric effect in textured Mn5Ge3-xAlx ribbons // J. Appl. Phys. 2013. V. 113. P. 17A944.
  25. Zhao F.Q., Dagula W., Tegus O., Buschow K.H.J. Magnetic-entropy change in Mn5Ge3−xSix alloys // J. Alloys Compd. 2006. V. 416. P. 43–45.
  26. Songlin, Dagula W., Tegus O., Brück E., De Boer F.R., Buschow K.H.J. Magnetic and magnetocaloric properties of Mn5Ge3− xSbx // J. Alloys Compd. 2002. V. 377(1–2). P. 269–271.
  27. Spiesser A., Slipukhina I., Dau M.T., Arras E., Le Thanh V., Michez L., Pochet P., Saito H., Yuasa S., Jamet M., Derrien J. Control of magnetic properties of epitaxial Mn5Ge3Cx films induced by carbon doping // Phys. Rev. B. 2011. V. 84. P. 165–203.
  28. Rathi A., Verma A.K., Gahtori B., Gautam A., Pant R.P., Babu P.D., Basheed G.A. Field dependence of magnetic entropy change in Mn5Ge3 near room temperature // J. Alloys Compd. 2011. V. 876. P. 159908.
  29. Emelyanova S.M., Bebenin N.G., Dyakina V.P., Chistyakov V.V., Dyachkova T.V., Tyutyunnik A.P., Wang R.L., Yang C.P., Sauerzopf F., Marchenkov V.V. Magnetocaloric Effect in Ni50Mn36Sb14–xZx (Z= Al, Ge; x= 0, 2) Heusler Alloys // Phys. Met. Metallogr. 2018. V. 119. P. 121–126.
  30. Slonczewski, J.C. Initiation of spin-transfer torque by thermal transport from magnons // Phys. Rev. B. 2010. V. 82(5). P. 054403.
  31. Bauer G.E., Saitoh E., Van Wees B.J. Spin caloritronics // Nat. Mater. 2012. V. 11(5). P. 391–9.
  32. Naumova L.I., Bebenin N.G., Zavornitsyn R.S., Milyaev M.A., Maksimova I.K., Proglyado V.V., Ustinov V.V. Longitudinal Magnetoresistance of Ta/Dy/Ta Nanostructures // Phys. Metals Metal. 2023. V. 124. P. 1768–1775.
  33. Hu J., Ernst B., Tu S., Kuveždić M., Hamzić A., Tafra E., Basletić M., Zhang Y., Markou A., Felser C., Fert A. Anomalous Hall and Nernst effects in Co2TiSn and Co2Ti0.6V0.4Sn Heusler thin films // Phys. Rev. Appl. 2018. V. 10(4). P. 044037.
  34. Lukyanenko A.V., Tarasov A.S., Shanidze L.V., Volochaev M.N., Zelenov F.V., Yakovlev I.A., Bondarev I.A., Volkov N.V. Technique for Fabricating Ferromagnetic/Silicon Active Devices and Their Transport Properties // J. Surf. Investig. 2021. V. 15. P. 65–69.
  35. Tarasov A.S., Tarasov I.A., Yakovlev I.A., Rautskii M.V., Bondarev I.A., Lukyanenko A.V., Platunov M.S., Volochaev M.N., Efimov D.D., Goikhman A.Y., Belyaev B.A. Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties // Nanomaterials. 2021. V. 12(1). P. 131.
  36. Naumova L.I., Zavornitsyn R.S., Milyaev M.A., Devyaterikov D.I., Rusalina A.S., Krinitsyna T.P., Pavlova A.Y., Proglyado V.V., Ustinov V.V. Helimagnetic and Crystallographic Growth Textures of Dysprosium Nanolayers on Co90Fe10, Nb, and β-Ta Buffer Layers // Phys. Metals Metal. 2023. V. 124. P. 763–773.
  37. Tarasov A.S., Lukyanenko A.V., Yakovlev I.A., Tarasov I.A., Bondarev I.A., Sukhachev A.L., Shanidze L.V., Smolyakov D.A., Varnakov S.N., Ovchinnikov S.G., Volkov N.V. Ferromagnetic Silicides and Germanides Epitaxial Films and Multilayered Hybrid Structures: Synthesis, Magnetic and Transport Properties // Bull. Russ. Acad. Sci.: Phys. 2023. V. 87(Suppl 1). P. S133–S146.
  38. Dung D.D., Odkhuu D., Le Vinh T., Cheol Hong S., Cho S. Strain-induced modification in the magnetic properties of Mn5Ge3 thin films // J. Appl. Phys. 2013. V. 114. P. 073906.
  39. de Oliveira R.C., Demaille D., Casaretto N., Zheng Y.J., Marangolo M., Mosca D.H., Varalda J. Magnetic and structural properties of Mn5+xGe3+y thin films as a function of substrate orientation // J. Appl. Phys. 2021. V. 539. P. 168325.
  40. Yasasun B.T., Onel A.C., Aykac I.G., Gulgun M.A., Arslan L.C. Effect of Ge layer thickness on the formation of Mn5Ge3 thin film on Ge/Si(111) // J. Magn. Magn. Mater. 2018. V. 473. P. 348–354.
  41. Petit M., Michez L., Dutoit C.E., Bertaina S., Dolocan V.O., Heresanu V., Stoffel M., Le Thanh V. Very low-temperature epitaxial growth of Mn5Ge3 and Mn5Ge3C0.2 films on Ge (111) using molecular beam epitaxy // Thin Solid Films. 2018. V. 589. P. 427–432.
  42. Spiesser A., Le Thanh V., Bertaina S., Michez L.A. Thermal stability of epitaxial Mn5Ge3 and carbon-doped Mn5Ge3 films // Appl. Phys. Lett. V. 2011. 99(12). P. 427–432.
  43. Olive-Mendez S., Spiesser A., Michez L.A., Le Thanh V., Glachant A., Derrien J., Devillers T., Barski A., Jamet M. Epitaxial growth of Mn5Ge3/Ge (111) heterostructures for spin injection // Thin Solid Films. 2011. V. 517(1). P. 191–196.
  44. Spiesser A., Olive-Mendez S.F., Dau M.T., Michez L.A., Watanabe A., Le Thanh V., Glachant A., Derrien J., Barski A., Jamet M. Effect of thickness on structural and magnetic properties of Mn5Ge3 films grown on Ge (111) by solid phase epitaxy // Thin Solid Films. 2010. V. 518(6). P. S113–S117.
  45. Bechler S., Kern M., Funk H.S., Colston G., Fischer I.A., Weißhaupt D., Myronov M., van Slageren J., Schulze J. Formation of Mn5Ge3 by thermal annealing of evaporated Mn on doped Ge on Si (111) // Semicond. Sci. Technol. 2018. V. 33(9). P. 095008.
  46. Yakovlev I., Tarasov I., Lukyanenko A., Rautskii M., Solovyov L., Sukhachev A., Volochaev M., Efimov D., Goikhman A., Bondarev I., Varnakov S. Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111) // Nanomaterials. 2022. V. 12. P. 4365.
  47. Tarasov A.S., Komogortsev S.V., Lukyanenko A.V., Yakovlev I.A., Tarasov I.A., Sukhachev A.L., Rautskii M.V., Solovyov L.A., Andryushchenko T.A., Bondarev I.A., Varnakov S.N. Structure, magnetic and magnetocaloric properties of the Mn5Ge3 thin film grown on Si(111) // J. Mater. Sci. 2024. P. 1–14.
  48. Sürgers C., Fischer G., Winkel P., Löhneysen H.V. Magnetotransport in ferromagnetic Mn5Ge3, Mn5Ge3C0.8, and Mn5Si3C0.8 thin films // Phys. Rev. B. 2014. V. 90(10). P. 104421.
  49. Volkov N.V., Tarasov A.S., Eremin E.V., Varnakov S.N., Ovchinnikov S.G., Zharkov S.M. Magnetic-field- and bias-sensitive conductivity of a hybrid Fe/SiO2/ p-Si structure in planar geometry // J. Appl. Phys. 2011. V. 109(12).
  50. Vikulov V.A., Dimitriev A.A., Balashev V.V., Pisarenko T.A., Korobtsov V.V. Low-temperature conducting channel switching in hybrid Fe3O4/SiO2/n-Si structures // Mater. Sci. Eng. B. 2016. V. 211. P. 33–36.
  51. Volkov N.V., Tarasov A.S., Rautskii M.V., Lukyanenko A.V., Bondarev I.A., Varnakov S.N., Ovchinnikov S.G. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures // Magn. Magn. Mater. 2018. V. 451. P. 143–158.
  52. Slipukhina I., Arras E., Mavropoulos P., Pochet P. Simulation of the enhanced Curie temperature in Mn5Ge3Cx compounds // Appl. Phys. Lett. 2009. V. 94(19). P. 192505.
  53. Forsyth J.B., Brown P.J. The spatial distribution of magnetisation density in Mn5Ge3 // J. Condens. Matter Phys. 1990. V. 2(11). P. 2713.
  54. Yokouchi T., Kanazawa N., Tsukazaki A., Kozuka Y., Kikkawa A., Taguchi Y., Kawasaki M., Ichikawa M., Kagawa F., Tokura Y. Formation of in-plane skyrmions in epitaxial MnSi thin films as revealed by planar hall effect // J. Phys. Soc. Jpn. 2015. V. 84(10). P. 104708.
  55. Kappel G., Fischer G., Jaegle A. On the saturation magnetization of Mn5Ge3 // Phys. Lett. A. 1973. V. 45. P. 267–268.
  56. Spiesser A., Virot F., Michez L.A., Hayn R., Bertaina S., Favre L., Petit M., Le Thanh V. Magnetic anisotropy in epitaxial Mn5Ge3 films // Phys. Rev. B. 2012. V. 86. P. 035211.
  57. Solovev P.N., Izotov A.V., Belyaev B.A., Boev N.M. Magnetic anisotropy in epitaxial Mn5Ge3 films // Phys. Rev. B. 2021. V. 604. P. 412699.
  58. Komogortsev S.V., Vazhenina I.G., Kleshnina S.A., Iskhakov R.S., Lepalovskij V.N., Pasynkova A.A., Svalov A.V. Advanced characterization of feni-based films for the development of magnetic field sensors with tailored functional parameters // Sensors. 2022. V. 22(9). P. 3324.
  59. Svalov A.V., Aseguinolaza I.R., Garcia-Arribas A., Orue I., Barandiaran J.M., Alonso J., Fernández-Gubieda M.L., Kurlyandskaya G.V. Structure and magnetic properties of thin permalloy films near the “transcritical” state // IEEE Trans. Magn. 2010. V. 46. P. 333–336.
  60. Kuz’Min M.D., Skokov K.P., Diop L.V.B., Radulov I.A., Gutfleisch O. Exchange stiffness of ferromagnets // Eur. Phys. J. Plus. 2020. V. 135(3). P. 1–8.
  61. Maraytta N., Voigt J., Salazar Mejía C., Friese K., Skourski Y., Perßon J., Salman S.M., Brückel T. Anisotropy of the magnetocaloric effect: Example of Mn5Ge3 // J. Appl. Phys. 2020. V. 128(10). P. 103903.
  62. Ba D.N., Becerra L., Casaretto N., Duvauchelle J.E., Marangolo M., Ahmim S., Almanza M., Lobue M. Magnetocaloric Gadolinium thick films for energy harvesting applications // AIP Adv. 2020. V. 10(3). P. 035110.
  63. El Hadri M.S., Polewczyk V., Xiao Y., Mangin S., Fullerton E. Large anisotropic magnetocaloric effect in all-sputtered epitaxial terbium thin films // Phys. Rev. Mater. 2020. V. 4(12). P.124404.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the process of synthesis of three images.

Download (32KB)
3. Fig. 2. Diffraction patterns for three different samples. * the most intense peaks identified as diffraction from the 00l plane of the Mn5Ge3 crystal are marked.

Download (19KB)
4. Fig. 3. AFM images of the surface of samples 1 (a), 2 (b) and 3 (c).

Download (26KB)
5. Fig. 4. Temperature dependences of specific resistance (a), its derivative (b) and magnetization (inset) for Mn5Ge3 films.

Download (36KB)
6. Fig. 5. Temperature dependences of magnetization M(T) in a field of 100 Oe for three samples. The inset shows the derivatives dM/dT.

Download (17KB)
7. Fig. 6. Field dependences of magnetization M(H) of sample 1 at a temperature of 100 K in a magnetic field parallel and perpendicular to the plane of the film.

Download (17KB)
8. Fig. 7. Film magnetization curves and their description (solid lines) by expression (2) — a; non-uniformity of the field Hs, determined using the description of the magnetization curves by expression (2), using samples 3 and 1 as an example (the height of the column corresponds to the statistical weight fi of the film section characterized by the field HSi) — b.

Download (29KB)
9. Fig. 8. Saturation field HS for films of different thicknesses. Solid line — equation (1).

Download (10KB)
10. Fig. 9. Change in magnetic entropy DS in three different Mn5Ge3/Si samples calculated from magnetization curves measured in a field of up to 15 kOe applied parallel to the film plane in the [001] direction of Mn5Ge3.

Download (17KB)