Magnetic properties of bilayer film with antidote lattice: monte carlo modeling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article simulates the magnetic properties of a bilayer film with an antidote lattice using the Monte Carlo method. The system consists of two films with different magnetic susceptibility (magnetosoft and magnetohard layers). The thickness of the magnetohard layer remains constant and the thickness of the magnetosoft layer varies. The antidote lattice is formed in the film. The antidote lattice is an array of square pores located at regular lattice nodes. The Ising model is used to describe the magnetic properties of the system. The film layers have different exchange constants in this model. The article studies the dependence of the Curie temperature for the system on the thickness of the soft magnetic layer and the period of the antidote lattice. The phase transition temperature depends non-linearly on both parameters. The second stage examines the process of magnetization. The antidote lattice and the magnetosoft layer distort the hysteresis loop. Dependence of coercive force and magnetization energy on system parameters is investigated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Belim

Omsk State Technical University

Хат алмасуға жауапты Автор.
Email: sbelim@mail.ru
Ресей, Omsk

S. Simakova

Omsk State Technical University

Email: sbelim@mail.ru
Ресей, Omsk

I. Tikhomirov

Omsk State Technical University

Email: sbelim@mail.ru
Ресей, Omsk

Әдебиет тізімі

  1. Krupinski M., Sobieszczyk P., Zieliński P., Marszałek M. Magnetic reversal in perpendicularly magnetized antidot arrays with intrinsic and extrinsic defects // Sci. Rep. 2019. V. 9. P. 13276.
  2. Belim S.V., Tikhomirov I.V. Computer simulation of Fe epitaxial films on a Cu(100) substrate // Physica Scripta. 2023. V. 98. P. 105973.
  3. Belim S.V. Investigation of Phase Transitions in Ferromagnetic Nanofilms on a Non-Magnetic Substrate by Computer Simulation // Materials 2022. V. 15. P. 2390.
  4. Kaidatzis A., del Real R.P., Alvaro R., Niarchos D., Vazquez M., García-Martín J.M. Nanopatterned hard/soft bilayer magnetic antidot arrays with long-range periodicity // J. Magn. Magn. Mater. 2020. V. 498. P. 166142.
  5. Salaheldeen M., Martínez-Goyeneche L., Álvarez-Alonso P., Fernández A. Enhancement the perpendicular magnetic anisotropy of nanopatterned hard/soft bilayer magnetic antidot arrays for spintronic application // Nanotechnology. 2020. V. 31. P. 485708.
  6. Challab N., Faurie D., Haboussi M., Adeyeye A.O., Zighem F. Differentiated Strain-Control of Localized Magnetic Modes in Antidot Arrays // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 29906–29915.
  7. Ruiz-Feal I., Lopez-Diaz L., Hirohata A., Rothman J., Guertler C.M., Bland J.A.C., Garcia L.M., Torres J.M., Bartolome J., Bartolome F., Natali M., Decanini D., Chen Y. Geometric coercivity scaling in magnetic thin film antidot arrays // J. Magn. Magn. Mater. 2002. V. 242–245. P. 597–600.
  8. Vavassori P., Gubbiotti G., Zangani G., Yu C.T., Yin H., Jiang H., Mankey G.J. Lattice symmetry and magnetization reversal in micron-size antidot arrays in permalloy film // J. Appl. Phys. 2002. V. 91. P. 7992.
  9. Heyderman L.J., Nolting F., Backes D., Czekaj S., Lopez-Diaz L., Kläui M., Rüdiger U., Vaz C.A.F., Bland J.A.C., Matelon R.J., Volkmann U.G., Fischer P. Magnetization reversal in cobalt antidot arrays // Phys. Rev. B. 2006. V. 73. P. 214429.
  10. Brigneti E.V., Ramos C.A., Ureña E.B., Pirota K., Vázquez M., Prieto P., Sanz J.M. Ferromagnetic resonance and magnetization in permalloy films with nanostructured antidot arrays of variable size // J. Magn. Magn. Mater. 2008. V. 320. P. 257.
  11. Paul D.I. General theory of the coercive force due to domain wall pinning // J. Appl. Phys. 1982. V. 53. P. 2362.
  12. Barnard J.A., Fujiwara H., Inturi V.R., Jarratt J.D., Scharf T.W., Weston J.L. Nanostructured magnetic networks // Appl. Phys. Lett. 1996. V. 69. P. 2758.
  13. Tripathy D., Vavassori P., Porro J.M., Adeyeye A.O., Singh N. Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures // Appl. Phys. Lett. 2010. V. 97. P. 042512.
  14. Suess D., Schrefl T., Fahler S., Kirschner M., Hrkac G., Dorfbauer F., Fidler J. Exchange spring media for perpendicular recording // Appl. Phys. Lett. 2005. V. 87. P. 012504.
  15. Asti G., Ghidini M., Pellicelli R., Pernechele C., Solzi M., Albertini F., Casoli F., Fabbrici S., Pareti L. Magnetic phase diagram and demagnetization processes in perpendicular exchange-spring multilayer // Phys. Rev. B. 2006. V. 73. P. 094406.
  16. Schmool D.S., Apolinario A., Casoli F., Albertini F. Ferromagnetic resonance study of Fe/FePt coupled films with perpendicular anisotropy // IEEE Trans. Magn. 2008. V. 44. P. 3087–3090.
  17. Navas D., Torrejon J., Béron F., Redondo C., Batallan F., Toperverg B.P., Devishvili A., Sierra B., Castaño F., Pirota K.R., Ross C.A. Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies // New J. Phys. 2012. V. 14. P. 113001.
  18. Béron F., Kaidatzis A., Velo M.F., Arzuza L.C.C., Palmero E.M., del Real R.P., Niarchos D., Pirota K.R., García-Martín J.M. Nanometer Scale Hard/Soft Bilayer Magnetic Antidots // Nanoscale Res. Lett. 2016. V. 11. P. 86.
  19. Salaheldeen M., Nafady A., Abu-Dief A.M., Díaz Crespo R., Fernández-García M.P., Andrés J.P., López Antón R., Blanco J.A. Enhancement of Exchange Bias and Perpendicular Magnetic Anisotropy in CoO/Co Multilayer Thin Films by Tuning the Alumina Template Nanohole Size // Nanomaterials. 2022. V. 12. P. 2544.
  20. Belim S.V., Belim S.S., Tikhomirov I.V., Bychkov I.V. Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice // Coatings. 2022. V. 12. P. 1526.
  21. Belim S.V., Simakova S.S., Tikhomirov I.V. Effect of disorder on phase transitions in antidote lattice thin films: computer simulations // Letters Mater. 2023. V. 13(4). P. 304–307.
  22. Waldman M., Hagler A.T. New combining rules for rare gas van der Waals parameters // J. Comput. Chem. 1993. V. 14. P. 1077–1084.
  23. Binder K. Critical Properties from Monte-Carlo Coarse-Graining and Renormalization // Phys. Rev. Lett. 1981. V. 47. P. 693.
  24. Landau D.P., Binder K. Phase Diagrams and Multicritical Behavior of a Three-Dimensional Anisotropic Heisenberg Antiferromagnet // Phys. Rev. B. 1978. V. 17. P. 2328–2342.
  25. Babaev A.B., Murtazaev A.K. The tricritical point of the site-diluted three-dimensional 5-state Potts model // J. Magn. Magn. Mater. 2022. V. 563. P. 169864.
  26. Бабаев А.Б., Муртазаев А.К. Моделирование трехкомпонентной модели Поттса на гексагональной решетке методом Монте–Карло // ФММ. 2023. Т. 124(7). С. 577–583.
  27. Kulesh N.A., Vázquez M., Lepalovskij V.N., Vas’kovskiy V.O. Antidot patterned single and bilayer thin films based on ferrimagnetic Tb–Co alloy with perpendicular magnetic anisotropy // Nanotechnology 2018. V. 29(6). P. 065301.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geometrical parameters of the system.

Жүктеу (11KB)
3. Fig. 2. Binder cumulants for a bilayer film with layer thicknesses D1=8, D2=6 and antidot lattice period d=8: (a) for the entire bilayer film; (b) for the hard magnetic layer; (c) for the soft magnetic layer.

Жүктеу (45KB)
4. Fig. 3. Dependence of the phase transition temperature TC of a bilayer film on the lattice period of antidots. The red dotted line shows the temperature of a continuous film without an antidot lattice.

Жүктеу (11KB)
5. Fig. 4. Dependence of magnetic susceptibility on temperature both for the film layers and for the bilayer film as a whole. (MH is the susceptibility graph for the hard magnetic layer; MS is the susceptibility graph for the soft magnetic layer; BL is the susceptibility graph for the bilayer film.)

Жүктеу (13KB)
6. Fig. 5. Hysteresis loops for films with different thicknesses of the soft magnetic layer D2 and the ratio of exchange integrals R: (a) R=0.4; (b) R=0.8.

Жүктеу (30KB)
7. Fig. 6. Hysteresis loops for films with different thicknesses of the soft magnetic layer D2, ratios of exchange integrals R and lattice period of antidots d: (a) R=0.4, a=2, d=4; (b) R=0.4, a=2, d=8; (c) R=0.8, a=2, d=16; (d) R=0.8, a=2, d=16.

Жүктеу (60KB)
8. Fig. 7. Dependence of the coercive force Hc on the ratio of the exchange integrals R for different thicknesses of the soft magnetic component D2 for a continuous film and a film with different lattice periods of antidots d: (a) continuous film; (b) d=16; (c) d=8; (d) d=4.

Жүктеу (64KB)
9. Fig. 8. Dependence of the coercive force Hc on the ratio of exchange integrals R for films with a soft magnetic layer thickness D2=6 and different lattice periods of antidots d.

Жүктеу (17KB)
10. Fig. 9. Dependence of the magnetization reversal energy Em on the ratio of exchange integrals R for different thicknesses of the soft magnetic component D2 for a continuous film and a film with different lattice periods of antidots d: (a) continuous film; (b) d=16; (c) d=8; (d) d=4.

Жүктеу (66KB)
11. Fig. 10. Dependence of the magnetization reversal energy on the ratio of exchange integrals for D2=6 and different lattice periods of antidots.

Жүктеу (16KB)