Structure and mechanical properties of Al–1.8Mn–1.6Cu alloy subjected to severe plastic deformation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The evolution of the structure and properties of an Al–1.8% Mn–1.6Cu alloy under deformation via high pressure torsion at room and elevated temperatures has been studied. The sequence of mechanisms of the formation of an ultrafine-grained structure has been established, and the cycling of the phase transformations, namely, the partial dissolution and precipitation of nanosized particles, has been observed. It has been found that aging, which occurs at the accumulated strain e = 6.9, suppresses the process of the grain growth under deformation at an elevated temperature. The effect of the structural-phase transformations on the strength and ductility of the alloy has been determined. As a result of deformation, the ultimate tensile strength increases by 3 times, and the yield strength increases by 7 times. Dynamic recrystallization results in a decrease in strength and in a considerable increase in the ductility of an alloy.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Petrova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: petrova@imp.uran.ru
Ресей, Ekaterinburg

V. Astafiev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Ekaterinburg

A. Kuryshev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Mondolfo L.F. Aluminum Alloys: Structure and Properties. London: Butterworths, 1976. 806 p.
  2. Polmear I.J. Light Metals: From Traditional Alloys to Nanocrystals, fourth ed. Oxford: Elsevier, 2006. 421 p.
  3. Lamb J., Rouxel B., Langan T., Dorin T. Novel Al–Cu–Mn–Zr–Sc compositions exhibiting increased mechanical performance after a high-temperature thermal exposure // J. Mater. Eng. Perform. 2020. V. 29. P. 5672–5684. https://doi.org/10.1007/s11665-020-05040-0
  4. Chen Zh., Pei Ch., Ma C. Microstructures and mechanical properties of Al–Cu–Mn alloy with La and Sm addition // Rare Metal. 2012. V. 31. P. 332–335. https://doi.org/10.1007/s12598-012-0515-6
  5. Tiryakioglu M., Shuey R.T. Quench sensitivity of 2219-T87 aluminum alloy plate // Mater. Sci. Eng. A. 2010. V. 527. P. 5033–5037. https://doi.org/10.1016/j.msea.2010.04.060
  6. Белов Н.А. Фазовый состав промышленных и перспективных алюминиевых сплавов. Москва: Издательский Дом МИСиС, 2010. 511 с.
  7. Белов Н.А. Обоснование состава и структуры деформируемых сплавов на базе системы Al–Cu–Mn (Zr), не требующих гомогенизации и закалки // Сборник трудов Международной научно-технической конференции “МАШТЕХ 2022. Инновационные технологии, оборудование и материальные заготовки в машиностроении. Москва. 2022. С. 10–13.
  8. Belov N.A., Akopyan T.K., Shurkin P.K., Korotkova N.O. Comparative Analysis of Structure Evolution and Thermal Stability of Experimental AA2219 and Model Al–2wt.%Mn-2wt.%Cu Cold Rolled Alloys // JALCOM. 2021. V. 864. P. 158823. https://doi.org/10.1016/j.jallcom.2021.1588238
  9. Belov N.A., Alabin A.N. Energy efficient technology for Al–Cu–Mn–Zr sheet alloys // Mater. Sci. Forum. 2013. V. 765. P. 13–17. https://doi.org/10.4028/www.scientific.net/MSF.765.13
  10. Belov N.A., Alabin A.N., Matveeva I.A. Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching // J. Alloys Compd. 2014. V. 583. P. 206–213. https://doi.org/10.1016/j.jallcom.2013.08.202
  11. Белов Н.А., Шуркин П.К., Короткова Н.О., Черкасов С.О. Влияние термообработки на структуру и термостойкость холоднокатаных листов сплавов системы Al–Cu–Mn с разным соотношением меди и марганца // Цветные металлы. 2021. № 9. C. 80–86. https://doi.org/10.17580/tsm.2021.09.09
  12. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science // Acta Mater. 2013. V. 61. P. 782–817. https://doi.org/10.1016/j.actamat.2012.10.038
  13. Рогачев С.О., Наумова Е.А., Табачкова Н.Ю., Тен Д.В., Сундеев Р.В., Задорожный М.Ю. Влияние кручения под высоким давлением на структуру и механические свойства сплава Al–Ca–Cu // ФММ. 2023. Т. 124. № 6. С. 550–556. https://doi.org/10.31857/S0015323023600314
  14. Страумал Б.Б., Заворотнев Ю.Д., Метлов Л.С., Страумал П.Б., Петренко А.Г., Томашевская Е.Ю. Фазовые превращения, вызванные кручением под высоким давлением // ФММ. 2022. Т. 123. № 12. С. 1283–1288.
  15. Okeke U., Yilmazer H., Sato Sh., Boehlert C.J. Strength enhancement of an aluminum alloy through high pressure torsion // Mater. Sci. Eng. A. 2019. V. 760. P. 195–205. https://doi.org/10.1016/j.msea.2019.05.102
  16. Садыков Д.И., Мурашкин М.Ю., Кириленко А.А., Левин А.А., Лихачев А.И., Орлова Т.С. Аномальное изменение механических свойств ультрамелкозернистых сплавов Al–Mg–Zr при низких температурах // ФТТ. 2024. Т. 66. № 6. С. 933–945. https://doi.org/10.61011/FTT.2024.06.58250.119
  17. Chen Yu., Liu M., Ding L., Jia Zh., Jia Sh., Wang J., Murashkin M., Valiev R.Z., Roven H.J. Atomic-scale inhomogeneous solute distribution in an ultrahigh strength nanocrystalline Al–8Mg aluminum alloy // Mater. Characterization. 2023. V. 198. P. 112706.
  18. Lomakin I.V., Arutyunyan A.R., Valiev R.R., Gadzhiev F.A., Murashkin M.Yu. Design and Evaluation of an Experimental Technique for Mechanical and Fatigue Testing of Sub Sized Samples // Exper. Techn. 2018. V. 42. № 3. P. 261–270. https://doi.org/10.1007/s40799-017-0229-7
  19. Petrova A.N., Rasposienko D.Y., Astafyev V.V., Yakovleva A.O. Structure and strength of Al–Mn–Cu–Zr–Cr–Fe ALTEC alloy after radial-shear rolling // Letters on Mater. 2023. P. 177–182. https://doi.org/10.22226/2410-3535-2023-2-177-182
  20. Belov N.A., Korotkova N.O., Akopyan T.K., Pesin A.M. Phase composition and mechanical properties of Al–1.5%Cu–1.5%Mn–0.35%Zr(Fe,Si) wire alloy // J. Alloys Comp. 2019. V. 782. P. 735–746.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structure of cast alloy.

Жүктеу (24KB)
3. Fig. 2. Fragments of diffraction patterns of cast and deformed ALTEK alloys: b — enlarged section of the diffraction pattern fragment in Fig. 2a.

Жүктеу (83KB)
4. Рис. 3. Микроструктура сплава АЛТЭК после 5 оборотов наковальни при КВД (ПЭМ): а — светлопольное изображение; б, в — темнопольные изображения в рефлексе фазы Al20Cu2Mn3.

Жүктеу (42KB)
5. Fig. 4. Effect of the anvil revolution number and deformation temperature on the grain size of the ALTEK alloy: a — grain size distribution in the alloy after 5 revolutions at RT; b — after 10 revolutions at RT; c — after 15 revolutions at 280°C; d — change in average grain size.

Жүктеу (35KB)
6. Fig. 5. Microstructure of the alloy after 15 revolutions of the anvil at a high pressure of 280°C (TEM): a — bright-field image; b — dark-field image in the reflection of the Al20Cu2Mn3 phase.

Жүктеу (31KB)