Effect of equal channel angular pressing on the structure and mechanical properties of Al–6Ca–3Ce alloy
- Authors: Andreev V.A.1, Barykin M.A.2, Karelin R.D.3,2, Komarov V.S.3,2, Naumova E.A.2, Rogachev S.O.1,2, Tabachkova N.Y.2
-
Affiliations:
- Baikov Institute of Metallurgy and Materials Science
- National Research Technological University MISiS
- Baikov Institute of Metallurgy and Materials Science, RAS
- Issue: Vol 125, No 12 (2024)
- Pages: 1652-1658
- Section: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://ruspoj.com/0015-3230/article/view/681061
- DOI: https://doi.org/10.31857/S0015323024120183
- EDN: https://elibrary.ru/IHLLBQ
- ID: 681061
Cite item
Abstract
The effect of equal-channel angular pressing (ECAP) on the structure and mechanical properties of experimental eutectic Al–6Ca–3Ce (wt %) alloy is studied. The ECAP of initial cast blanks is fulfilled under isothermal conditions at a temperature of 200°С using 4 passes and the BC route of extruding. As a result of ECAP, both the strength and plasticity of the alloy are found to increase by 2 and 5 to 15 times, respectively. The anisotropy of properties is found, i.e., the strength in the transverse direction is lower by 5 to 15%, whereas the relative elongation is 3 times higher than those along the lengthwise direction. The achieved combination of properties is due to the formation of ultrafine structure characterized by low density of dislocation and the refinement of eutectic particles. The higher plasticity of samples in the transverse direction is due to the lower length of boundaries of eutectic particles retarding the movement of dislocations.
Full Text

About the authors
V. A. Andreev
Baikov Institute of Metallurgy and Materials Science
Email: csaap@mail.ru
Russian Federation, Moscow
M. A. Barykin
National Research Technological University MISiS
Email: csaap@mail.ru
Russian Federation, Moscow
R. D. Karelin
Baikov Institute of Metallurgy and Materials Science, RAS; National Research Technological University MISiS
Email: csaap@mail.ru
Russian Federation, Moscow; Moscow
V. S. Komarov
Baikov Institute of Metallurgy and Materials Science, RAS; National Research Technological University MISiS
Email: csaap@mail.ru
Russian Federation, Moscow; Moscow
E. A. Naumova
National Research Technological University MISiS
Email: csaap@mail.ru
Russian Federation, Moscow
S. O. Rogachev
Baikov Institute of Metallurgy and Materials Science; National Research Technological University MISiS
Author for correspondence.
Email: csaap@mail.ru
Russian Federation, Moscow; Moscow
N. Yu. Tabachkova
National Research Technological University MISiS
Email: csaap@mail.ru
Russian Federation, Moscow
References
- Наумова Е.А., Васина М.А., Черногорова О.П., Рогачев С.О., Задорожный М.Ю., Бобрышева А.О. Исследование влияния церия на структуру и свойства кальцийсодержащих алюминиевых сплавов // Металлург. 2023. № 9. С. 49–57.
- Shurkin P.K., Letyagin N.V., Yakushkova A.I., Samoshina M.E., Ozherelkov D.Y., Akopyan T.K. Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser-powder bed fusion // Mater. Letters. 2021. V. 285. P. 129074.
- Akopyan T.K., Belov N.A., Lukyanchuk A.A., Letyagin N.V., Sviridova Т.А., Petrova A.N., Fortuna A.S., Musin A.F. Effect of high pressure torsion on the precipitation hardening in Al–Ca–La based eutectic alloy // Mater. Sci. Eng. A. 2021. V. 802. P. 140063.
- Акопян Т.К., Летягин Н.В., Белов Н.А., Кошмин А.Н., Гизатулин Д.Ш. Анализ микроструктуры и механических свойств нового деформируемого сплава на основе ((Al) + Al4(Ca,La))-эвтектики // ФММ. 2020. Т. 121. № 9. С. 1003–1008.
- Shen S., Wu C., Li Y., Huang Y., Huang W., Zhang P., Zhong S., Lu Y., Luo G., Gan Z., Liu J. Refining mechanism and elevated-temperature mechanical properties of Al–Ce alloys solidified under super gravity field // Mater. Sci. Eng. A. 2023. V. 879. P. 145191.
- Weiss D. Improved High-Temperature Aluminum Alloys Containing Cerium // J. Mater. Eng. Performance. 2019. V. 28. N 4. P. 1903–1908.
- Czerwinski F. Cerium in aluminum alloys // J. Mater. Sci. 2020. V. 55. № 1. P. 24–72.
- Добромыслов А.В., Талуц Н.И. Структура сплавов системы Al–Fe, изготовленных разными методами, после интенсивной пластической деформации под давлением // ФММ. 2017. Т. 118. № 6. С. 595–602.
- Cepeda-Jiménez C.M., García-Infanta J.M., Zhilyaev A.P., Ruano O.A., Carreño F. Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion // J. Alloys Comp. 2011. V. 509. P. 636–643.
- Estrin J., Murashkin M., Valiev R. Ultrafine-grained aluminium alloys: processes, structural features and properties / in Fundamentals of aluminium metallurgy, by eds R.N. Lumley, Woodhead Publishing, UK, 2011. P. 468–503.
- Ширинкина И.Г., Петрова А.Н., Бродова И.Г., Пилюгин В.П., Антонова О.В. Фазовые и структурные превращения в алюминиевом сплаве АМц при разных методах интенсивной пластической деформации // ФММ. 2012. Т. 113. № 2. С. 181–186.
- Rogachev S.O., Naumova E.A., Lukina E.A., Zavodov A.V., Khatkevich V.M. High strength Al–La, Al–Ce, and Al–Ni eutectic aluminum alloys obtained by high-pressure torsion // Materials. 2021. V. 14. P. 6404.
- Rogachev S.O., Zavodov A.V., Naumova E.A., Chernenok T.V., Lukina E.A., Zadorozhnyy M.Yu. Improvement of strength–ductility balance of Al–Ca–Mn–Fe alloy by severe plastic deformation // Mater. Letters. 2023. V. 349. P. 134797.
- Glezer A.M. On the Relation between the Strength and the Plasticity of Metallic Materials // Russian Metallurgy (Metally). 2016. V. 2016. № 10. P. 906–907.
- Рогачев С.О. К управлению деформационным упрочнением и пластичностью металлических материалов в широком диапазоне температур // Деформация и разрушение материалов. 2023. № 10. С. 2–9.
- Murashkin M.Y., Sabirov I., Medvedev A.E., Enikeev N.A., Lefebvre W., Valiev R.Z., Sauvage X. Mechanical and electrical properties of an ultrafine grained Al–8.5 wt.% RE (RE= 5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation // Mater. Design. 2016. V. 90. P. 433–442.
- Medvedev A.E., Murashkin M.Y., Enikeev N.A., Bikmukhametov I., Valiev R.Z., Hodgson P.D., Lapovok R. Effect of the eutectic Al–(Ce,La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al–4.5(Ce,La) alloy after SPD and subsequent annealing // J. Alloys Compounds. 2019. V. 796. P. 321–330.
- Рогачев С.О., Наумова Е.А., Табачкова Н.Ю., Тен Д.В., Сундеев Р.В., Задорожный М.Ю. Влияние кручения под высоким давлением на структуру и механические свойства сплава Al–Ca–Cu // ФММ. 2023. Т. 124. № 6. С. 550–556.
- Ivanisenko Yu., Lojkowski W., Valiev R.Z., Fecht H.-J. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion // Acta Mater. 2003. V. 51. N. 18. P. 5555–5570.
- Sauvage X., Cuvilly F., Russell A., Edalati K. Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum // Mater. Sci. Eng. A. 2020. V. 798. P. 140108.
Supplementary files
