Temperature dependence of the magnetic susceptibility of nanocomposites with particles of lithium-cobalt and lithium-cobalt-nickel orthophosphates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The magnetic susceptibility of nanocomposites with particles of lithium-cobalt and lithium-cobalt-nickel orthophosphates in constant and alternating magnetic fields has been studied. Temperature dependences of susceptibility as well as magnetization curves are measured. It is shown that the temperature dependence of a composite with LiNi0.5Co0.5PO4 particles has one maximum at a temperature of TN = 13.5 K, and a state with an incommensurable non-collinear magnetic ordering is not realized. In contrast, a nanocomposite with LiCoPO4 particles has two maxima at temperatures TN = 31.1 K and Tmax= 21.9 K. Below the temperature TN, antiferromagnetic ordering is realized in both nanocomposites.

Full Text

Restricted Access

About the authors

A. B. Rinkevich

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: rin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

O. V. Nemytova

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

D. V. Perov

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

M. S. Stenina

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Toft-Petersen R., Reehuis M., Jensen T.B.S., Andersen N.H., Li J., Le M.D., Laver M., Niedermayer C., Klemke B., Lefmann K., Vaknin D. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4 // Phys. Rev. B. 2015. V. 92. No. 2. Р. 024404.
  2. Wang K.F., Liu J.-M., Ren Z.F. Multiferroicity: the coupling between magnetic and polarization orders // Adv. Phys. 2009. V. 58. No. 4. P. 321–448.
  3. Handbook of magnetic materials. Volume 19 / Buschow K.H.J. (Ed.). Oxford: Elsevier, 2011. 436 p.
  4. Rivera J.-P. The linear magnetoelectric effect in LiCoPO4 revisited // Ferroelectrics. 1994. V. 161. No. 1. P. 147–164.
  5. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мультиферроики // УФН. 2012. Т. 182. № 6. С. 593–620.
  6. Urusova N., Semkin M., Kratochvilova M., Barykina J., Volegov A., Park J.-G., Lee S., Pirogov A. Analysis of migration maps and features of magnetic properties of LiNi0.9M0.1PO4 (M = Co, Mn) single crystals // J. Alloys Compd. 2019. V. 781. P. 571–581.
  7. Wersing W. Microwave ceramics for resonators and filters // Curr. Opin. Solid St. Mat. Sci. 1996. V. 1. No. 5. P. 715–731.
  8. Kharchenko Yu.N., Kharchenko N.F., Baran M., Szymczak R. Weak ferromagnetism and an intermediate incommensurate antiferromagnetic phase in LiNiPO4 // Low Temp. Phys. 2003. V. 29. No. 7. P. 579–583.
  9. Lewińska S., Szewczyk A., Gutowska M.U., Wieckowski J., Puzniak R., Diduszko R., Reszka A., Kowalski B.J., Kharchenko Yu., Molenda J. Magnetic susceptibility and phase transitions in LiNiPO4 // Phys. Rev. B. 2019. V. 99. No. 21. P. 214440.
  10. Kharchenko N.F., Kharchenko Yu.N., Szymczak R., Baran M., Schmid H. Weak ferromagnetism in the antiferromagnetic magnetoelectric crystal LiCoPO4 // Low Temp. Phys. 2001. V. 27. No. 9. P. 895–898.
  11. Kharchenko N.F., Desnenko V.A., Kharchenko Yu.N., Szymczak R., Baran M. Nonmonotonic temperature dependence of the spontaneous magnetization of the antiferromagnetic crystal LiCoPO4 // Low Temp. Phys. 2002. V. 28. No. 8. P. 646–652.
  12. Khrustalyov V.M., Savytsky V.M., Kharchenko M.F. Magnetoelectric effect in antiferromagnetic LiCoPO4 in pulsed magnetic fields // Low Temp. Phys. 2016. V. 42. No. 4. P. 280–285.
  13. Toft-Petersen R., Fogh E., Kihara T., Jensen J., Fritsch K., Lee J., Granroth G.E., Stone M.B., Vaknin D., Nojiri H., Christensen N.B. Field-induced reentrant magnetoelectric phase in LiNiPO4  // Phys. Rev. B. 2017. V. 95. No. 6. Р. 064421.
  14. Kharchenko N.F., Khrustalev V.M., Savitskiĭ V.N. Magnetic field induced spin reorientation in the strongly anisotropic antiferromagnetic crystal LiCoPO4 // Low Temp. Phys. 2010. V. 36. No. 6. P. 558–564.
  15. Fogh E., Toft-Petersen R., Ressouche E., Niedermayer C., Holm S.L., Bartkowiak M., Prokhnenko O., Sloth S., Isaksen F.W., Vaknin D., Christensen N.B. Magnetic order, hysteresis, and phase coexistence in magnetoelectric LiCoPO4 // Phys. Rev. B. 2017. V. 96. No. 10. P. 104420.
  16. Semkin M.A., Urusova N.V., Lee S., Kalinkin M.O., Kuznetsov D.K., Kulesh N.A., Neznakhin D.S., Kellerman D.G., Pirogov A.N. Structure and magnetic properties of LiNi1-xCoxPO4 magnetoelectrics with x = (0, 0.1, and 0.2) // J. Phys. Conf. Ser. 2019. V. 1389. P. 012050.
  17. Туров Е.А., Колчанов А.В., Меньшенин В.В., Мирсаев И.Ф., Николаев В.В. Симметрия и физические свойства антиферромагнетиков. М.: Физматлит, 2001. 560 с.
  18. Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices // Russ. J. Gen. Chem. 2013. V. 83. No. 11. P. 2148–2158.
  19. Самойлович М.И., Ринкевич А.Б., Бовтун В., Белянин А.Ф., Кемпа М., Нужный Д., Цветков М.Ю., Клещева С.М. Оптические, магнитные и диэлектрические свойства опаловых матриц с заполнением межсферических нанополостей кристал-лическими мультиферроиками, пьезо-электрическими и сегнетоэлектрическими материалами // Рос. Хим. Журнал (Журн. Рос. Хим. Об-ва им. Д.И. Менделеева). 2012. Т. 56. №№ 1–2. С. 11–25.
  20. Fogh E., Zaharko O., Schefer J., Niedermayer C., Holm-Dahlin S., Sørensen M.K., Kristensen A.B., Andersen N.H., Vaknin D., Christensen N.B., Toft-Petersen R. Dzyaloshinskii-Moriya interaction and the magnetic ground state in magnetoelectric LiCoPO4 // Phys. Rev. B. 2019. V. 99. No. 10. P. 104421.
  21. Vaknin D., Zarestky J.L., Rivera J.-P., Schmid H. Commensurate-incommensurate magnetic phase transition in magnetoelectric single crystal LiNiPO4  // Phys. Rev. Lett. 2004. V. 92. No. 20. P. 207201.
  22. Rissouli K., Benkhouja K., Bettach M., Sadel A., Zahir M., Derrory A., Drillon M. Crystallochemical and magnetic studies of LiMi1xMx'PO4 (M, M' = Mn, Co, Ni; O≤ x≤ 1) // Ann. Chim.: Sci. Mater. 1998. V. 23. No. 1–2. P. 85–88.
  23. Szewczyk A., Gutowska M.U., Wieckowski J., Wisniewski A., Puzniak R., Diduszko R. Phase transitions in single-crystalline magnetoelectric LiCoPO4 // Phys. Rev. B. 2011. V. 84. No. 10. P. 104419.
  24. Cole K.S., Cole R.H. Dispersion and absorption in dielectrics. I. Alternating current // J. Chem. Phys. 1941. V. 9. No. 4. P. 341–351.
  25. Rinkevich A.B., Nemytova O.V., Perov D.V. Magnetic susceptibility of a nanocomposite based on an opal matrix with Yb2Ti2O7 particles // J. Compos. Sci. 2023. V. 7. No. 3. P. 97.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of samples No. 1 (a), 2 (b), 3 (c), obtained by scanning microscopy.

Download (4MB)
3. Fig. 2. Magnetization curves of samples No. 1 (a), 2 (b), 3 (c), measured at several temperatures.

Download (1MB)
4. Fig. 3. Temperature dependence of magnetization in nanocomposite sample No. 1 with LiNi0.5Co0.5PO4 particles: field H=100 Oe (a); field H=3 kOe (b); temperature dependence of inverse susceptibility (c).

Download (1MB)
5. Fig. 4. Temperature dependence of magnetic susceptibility of sample No. 1 in an alternating field with a frequency of f = 80 Hz and H~=4 Oe.

Download (277KB)
6. Fig. 5. Temperature dependence of magnetic susceptibility of sample No. 2 of nanocomposite with LiCoPO4 particles (a) and magnetization curves of sample 2 at several temperatures (b).

Download (772KB)
7. Fig. 6. Temperature dependence of the magnetic susceptibility of sample No. 2 of the nanocomposite with LiCoPO4 particles, measured in alternating fields with a frequency of 1 Hz and 1 kHz at an alternating field amplitude of H~ = 4 Oe.

Download (372KB)
8. Fig. 7. Temperature dependences of the magnetic susceptibility of sample No. 3 of the nanocomposite with LiCoPO4 particles, measured in constant (DC — direct current) and alternating (AC — alternating current) fields (a); temperature dependence of the inverse susceptibility measured in a constant field H = 1 kOe (b).

Download (682KB)
9. Fig. 8. Frequency dependences of the real part of the magnetic susceptibility of sample No. 2 of the nanocomposite with LiCoPO4 particles, measured in alternating fields at several temperatures.

Download (434KB)
10. Fig. 9. Approximation of the frequency dependence of the real part of the magnetic susceptibility of sample No. 2 of the nanocomposite with LiCoPO4 particles at T = 4 K, performed according to formula (2).

Download (294KB)