Distribution of complexes with divalent nickel Ni2+ in single crystals of lithium-gallium spinel Li0.5Ga2.5O4

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The structural and magnetic nonequivalence of Ni2+ nickel ions in single crystals of lithium-gallium spinel has been studied by Electron Paramagnetic Resonance (EPR). The distribution of ions over sublattices and structurally unequal positions in the unit cell of the crystal lattice of a lithium-gallium spinel single crystal Li0.5Ga2.5O4 is shown. The parameters and properties of materials are determined by this distribution of ions. Two types of centers are formed in a single crystal. Nickel Ni2+ ions are replaced in structurally unequal positions by gallium ions located in a tetrahedral environment and lithium ions located in an octahedral environment. The research can be used to analyze the properties of spinel ferrites and non-monocrystalline materials. The perspective of the work lies in the fact that currently powder materials are usually used in practice. But their properties vary depending on the production technology. Using the example of single crystals, it is shown how the introduced impurity ions are distributed. This distribution occurs uniformly over structurally unequal positions. It should be taken into account that in the case of rapid cooling during the growth of single crystals and films, the ion distribution may be different.

Full Text

Restricted Access

About the authors

V. А. Shapovalov

Galkin Donetsk Institute for Physics and Engineering

Author for correspondence.
Email: vashapovalov1@mail.ru
Russian Federation, Donetsk, 283048

References

  1. Narang S.-B., Pubby K. Nickel Spinel Ferrites: A review // J. Magn. Magn. Mater. 2021. V. 519. Р. 167163.
  2. Tsurkan V., Krug Von Nidda H.-A., Deisenhofer J., Lunkenheimer P., Loidl A. On the complexity of spinels: Magnetic, electronic, and polar ground states // Phys. Rep. 2021. V. 926. С. 1–86.
  3. Maigny L., Dupont M. Spinels: Occurrences, Physical Properties and Applications. Nova Sci. Publishers, Inc: New York, USA. 2013.
  4. Ganesh I.A. Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications // Int. Mater. Rev. 2013. V. 58. Р. 63–112.
  5. Zou Y., Gréaux S., Irifune T., Li B., Higo Y. Unusual Pressure Effect on the Shear Modulus in MgAl2O4 Spinel // J. Phys. Chem. C. 2013. V. 117. Р. 24518−24526.
  6. Шаповалов В.В., Шаповалов В.А., Вальков В.И., Шавров В.Г., Коледов В.В., Службин Ю.А., Потапская О.Н. Самоорганизация монокристалла шпинели Li0.5Ga2.5O4 и распределение в нем 3d3 ионов хрома // Физика и техника высоких давлений. 2020. Т. 30. № 3. С. 49–62.
  7. Shapovalov V.V., Шаповалов В.А., Шавров В.Г., Коледов В. В., Вальков В.И., Каманцев А.П. Распределение ионов марганца Mn2+в монокристалле литий-галлиевой шпинели Li0.5Ga2.5O4 // ФТТ. 2021. Т. 63. Вып. 4. С. 499–502.
  8. Шаповалов В.В., Шаповалов В.А., Дрокина Т.В., Воротынов А.М., Вальков В.И. Распределение ионов кобальта 2+ в монокристаллах шпинели Li0.5Ga2.5O4 // ФММ. 2024. Т. 125. № 1. С. 32–38.
  9. Donegan J.F., Bergin F.J., Glynn T.J., Imbusch G.F., and Remeika J.P. The optical spectroscopy of LiGa5O8:Ni2+ // J. Luminescence. 1986. V. 35. Р. 57–63.
  10. Martin D.Z.C., Haworth A.R., Schmidt W.L., Baker P.J., Boston R., Johnston K.E., McLaren N.R. Evaluating lithium diffusion mechanisms in the complex spinel Li2NiGe3O8 // Phys. Chem. Chemical Phys. 2019. V. 21. Р. 23111–23118.
  11. Manthiram A., Chemelewski K., Lee E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries // Energy Environ. Sci. 2014. V. 7. Р. 1339–1350.
  12. Shuangming Ch., Yanfei W., Peixin C., Wangsheng Ch., Xing Ch., Ziyu W. Cation Distribution in ZnCr2O4 Nanocrystals Investigated by X-ray Absorption Fine Structure Spectroscopy // J. Phys. Chem. C. 2013. V. 117. Р. 25019–25025.
  13. Le Nestour A., Gaudon M., Villeneuve G., Daturi M., Andriesse R., Demourgues A. Defects in Divided Zinc-Copper Aluminate Spinels: Structural Features and Optical Absorption Properties // Inorg. Chem. 2007. V. 46. Р. 4067–4078 .
  14. Xiulan D., Duorong Y., Fapeng Yu. Cation Distribution in Co-Doped ZnAl2O4 Nanoparticles Studied by X-ray Photoelectron Spectroscopy and Al27 Solid-State NMR Spectroscopy // Inorg. Chem. 2011. V. 50. Р. 5460–5467.
  15. Lee E.-S., Nam K.-W., Hu E., Manthiram A. Influence of Cation Ordering and Lattice Distortion on the Charge−Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V // Chem. Mater. 2012. V. 24. Р. 3610−3620.
  16. Селезнев В.Н., Пухов И.К., Дрокин А.К., Шаповалов В.А. Магнитная и кристаллографическая анизотропия монокристаллов литиевого и литий-цинкового ферритов с малыми добавками кобальта // ФТТ. 1970. Т. 12. № 3. С. 885–891.
  17. Abragam A. and Bleaney B. Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon press, 1970.
  18. Пуа Р. Химия твердого тела. М.: Металлургия, 1972. C. 49–75.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the crystal field potential E on the distance R in relative units. The minima are located along the axes of the [111] type. Tetrahedral and octahedral sites with Ni2+ ions in the unit cell are shown.

Download (753KB)
3. Fig. 2. The arrangement of the magnetic axes x, y, z of the Cr3+ ion relative to the crystallographic axes of the type [110], [112], [111]. The magnetic field H0 is parallel to the main magnetic axis z of the ion.

Download (480KB)