Влияние серебра на полярность основы гидрофобного матрикса биомембран

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Проведена количественная оценка вариаций реальных значений гидрофобности отдельных молекул главных классов ненасыщенных липидов при появлении в окружении последних серебра и его солей. Отражены те главные достижения последних лет, где наноразмерные структуры кластеров серебра в процессах своего взаимодействия с молекулами природного происхождения разной степени ненасыщенности формировали с его ионами устойчивые координационные комплексы. Описаны результаты этих взаимодействий с главными классами ненасыщенных липидов биологических структур и даны примеры плодотворной эксплуатации уникальных свойств таких комплексов с целью улучшения рабочих параметров тех аналитических приборов и инструментов, которые сейчас наиболее часто применяют в базовых областях биохимии и генетики.

全文:

受限制的访问

作者简介

В. Пчёлкин

ФГБУН Институт физиологии растений имени К. А. Тимирязева Российской академии наук

编辑信件的主要联系方式.
Email: pchel_vp@ippras.ru
俄罗斯联邦, Москва

参考

  1. Tanabe S., Hirata K., Tsukiyamai K., Lisy J.M., Ishiuchi S. Can Ag+ Permeate through a potassium ion channel? A bottom-up approach by infrared spectroscopy of the Ag+ complex with the partial peptide of a selective filter // J. Phys. Chem. Lett. 2023. V. 14. P. 2886. https://doi.org/10.1021/acs.jpclett.2c03366
  2. Jiang Y., Cui J., Zhang T., Wang M., Zhu G., Miao P. Electrochemical detection of T4 polynucleotide kinase based on target-assisted ligation reaction coupled with silver nanoparticles // Anal. Chim. Acta. 2019. V. 1085. P. 85. https://doi.org/10.1016/j.aca.2019.07072
  3. Chen W.-T., Cheng Y.-W., Yang M.-C., Jeng R.-J., Liu T.-Y., Wang J.-K., Wang Y.-L. Mesoporous silica nanospheres decorated by Ag-nanoparticle arrays with 5 nm interparticle gap exhibit insignificant hot-spot raman enhancing effect // J. Phys. Chem. C. 2019. V. 123. P. 18528. https://doi.org/10.1021/acs.jpcc.9b04074
  4. Lyu D., Li J., Wang X.W., Guo W., Wang E. Cationic-polyelectrolyte-modified fluorescent DNA-silver nanoclusters with enhanced emission and higher stability for rapid bioimaging // Anal. Chem. 2019. V. 91. P. 2050. https://doi.org/10.1021/acs.analchem.8b04493
  5. Zhang Y., Yang C., He J., Li M., Yan R., Xu W. Ratiometric fluorescence biosensing of tandem biemissive Ag clusters boosted by confined catalytic DNA assembly // Anal. Chem. 2023. V. 95. P. 17928. https://doi.org/10.1021/acs.analchem.3c04388
  6. Setzler C.J., Arrington C.A., Lewis D., Petty J.T. Breaching the fortress: photochemistry of DNA-caged Ag10 6+ // J. Phys. Chem. 2023. V. 127. P. 10851. https://doi.org/10.1021/acs.jpcb.3c06358
  7. Ramazanov R.R., Nasibullin R.T., Sundholm D., Kurtén T., Valiev R.R. Nonradiative deacytivation of the fluorescent Ag16-DNA and Ag10-DNA emitters: the role of water // J. Phys. Chem. Lett. 2024. V. 15. P. 10710. https://doi.org/10.1021/acs.jplett.4c01959
  8. Luo J.C., Liu T.B. Competition and cooperation among different attractive forces in solutions of inorganic-organic hybrids containing macroionic clusters // Langmuir. 2019. V. 35. P. 7603. https://doi.org/10.1021/acs.langmuir.9b00480
  9. Sych T.S., Buglak A.A., Reveguk Z.V., Pomogaev V.A., Ramazanov R.R., Kononov A.I. Which amino acids are capable of nucleating fluorescent silver clusters in proteins? // J. Phys. Chem. C. 2018. V. 122. P. 26275. https://doi.org/10.1021/acs/jpcc.8b08907
  10. van der Linden M., van Bunningen A.J., Delgado-Jaime M.U., Detlefs B., Glatzel P., Longo A., de Groot F.M.F. Insights into the synthesis mechanism of Ag29 nanoclusters // J. Phys. Chem. C. 2018. V. 122. P. 28351. https://doi.org/10.1021/acs/jpcc.8b089360
  11. Ganji N., Khan I.A., Bothun G.D. Surface activity of poly(ethylene glycol)-coated silver nanoparticles in the presence of a lipid monolayer // Langmuir. 2018. V. 34. P. 2039. https://doi.org/10.1021/acs.langmuir.7b03743
  12. Hua X., Li H.W., Long Y.T. Investigation of silver nanoparticle induced changes on a single cell surface by time-of-flight secondary ion mass spectrometry // Anal. Chem. 2018. V. 90. P. 1072. https://doi.org/10.1021/acs.analchem.7b04591
  13. Zhu M., Lu K., Jin Y., Xu X., Chu C., Hao H., Zheng Q. Boronic derivatization-based strategy for monoacylglycerol identification, isomer annotation and quantification // Anal. Chim. Acta. 2021. V. 1190. P. 7. https://doi.org/10.1016/j.aca.2021.339233
  14. Chen Y., Wang T., Xie P., Song Y., Wang J., Cai Z. Mass spectrometry imaging alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine // Anal. Chim. Acta. 2021. V. 1184. P. 8. https://doi.org/10.1016/j.aca.2021.339011
  15. Xing R.R., Wen Y.R., Dong Y.R., Wang Y., Zhang Q., Liu Z. Dual molecularly imprinted polymer-based plasmonic immunosandwich assay for the specific and sentetive detection of protein biomarkers // Anal. Chem. 2019. V. 91. P. 9993. https://doi.org/10.1021/acs.analchem.9b01826
  16. Zhang C.-W., Wang C.-Z., Tao R., Ye J.-Z. Separation of polyprenols from Ginkgo biloba leaves by a nano silica-based adsorbent containing silver ions // J. Chromatogr. A. 2019. V. 1590. P. 58. https://doi.org/10.1016/j.chroma.2019.01.047
  17. Perera W.H., Frommenwiler D.A., Sharaf M.H.M., Reich E. An improved high-performance thin-layer chromatographic method to unambiguously assess Ginkgo biloba leaf finished products // J. Planar Chromatogr. ‒ Mod. TLC. 2021. V. 34. P. 559. https://doi.org/10.1007/s00764-021-00146-0
  18. Zhang W., Shi M.-M., Zhang F., Cao F., Su E. A facile method to determine the native contents of 4ʹ-O-Methylpyridoxine and 4ʹ-O-Methylpyridoxine-5ʹ-glucoside in Ginkgo biloba seeds // J. Agric. Food Sci. 2021. V. 69. P. 14270. https://doi.org/10.1021/acs.jafc.1c04937
  19. Menta S., Ciogli A., Villani C., Gasparrini F., Pierini M. Recognition mechanism of aromatic derivatives resolved by argentation chromatography: the driving role played by dubstituent groups // Anal. Chim. Acta. 2018. V. 1019. P. 135. 10.1016/j.aca.2018.02.038' target='_blank'>https://doi: 10.1016/j.aca.2018.02.038
  20. Wang L., Longo W.M., Dillon J.T., Zhao J., Zheng Y., Moros M., Huang Y. An efficient approach to eliminate steryl ethers and miscellaneous esters/ketones for gas chromatographic analysis of alkenones and alkenoates // J. Chromatogr. A. 2019. V. 1596. P. 175. https://doi.org/10.1016/jchroma.2019.02.064
  21. Liao S.-A., Dillon J.T., Huang C.-C., Santos E., Huang Y.-S. Silver (I)-dimercaptotriazine functionalized silica: a highly selective liquid chromatography stationary phase targeting unsaturated molecules // J. Chromatogr. A. 2021. V. 1645. P. 11. https://doi.org/10.1016/j.chroma.2021.462122
  22. Tsui H.-W., Lin S.-Z., Hsu Y.-C., Dai F.-J. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography // J. Chromatogr. A. 2021. V. 1662. P. 12. https://doi.org/10.1016/j.chroma.2021.462736
  23. Ping G.-C., Hou W.-P., Shi Q.-Q., Ding H.-J., Gong X., Li J.-M., Xu H. Preparation of monolithic silica and polymer capillary columns with ultrahigh column efficiencies and comparisons between van deemter plots of alkylbenzenes on these two kinds of columns // J. Chromatogr. Sci. 2022. V. 60. P. 7. https://doi.org/10.1093/chromsci/bmab027
  24. Wagner M., Oellig C. Screening for mineral oil hydrocarbons in vegetable oils by silver ion-planar solid phase extraction // J. Chromatogr. A. 2021. V. 1662. P. 10. https://doi.org/10.1016/j.chroma.2021.462732
  25. Lu H., Zhu H., Dong H., Guo L., Ma T., Wang X. Purification of pyrethrins from flowers of Chrisanthemum cineraraeeflium by high-speed counter-current chromatography based on coordination reaction with silver nitrate // J. Chromatogr. A. 2020. V. 1613. P. 7. https://doi.org/10.1016/j.chroma.2019.460660
  26. Fardin-Kia A.R. Preparation, isolation and identification of non-cojugated C18:2 fatty acid isomers // Chem. Phys. Lipids. 2016. V. 201. P. 50. https://doi.org/10.1016/j.chemphyslip.2016.10.003
  27. Han K., Zhong Z.-H., Zhang L., Hu Q.-Z., Ji W.-H., Liu S.-H. C18 reversed-phase liquid chromatography column coupled with ion chromatography: a method for the determination of trimethylamine hydrochloride residues in cationic etherifying agent // Chromatographia. 2022. V. 85. P. 83. https://doi.org/10.1007/s10337-021-04117-9
  28. Delmonte P., Milani A., Bhangley S. Structural determination and occurrence in aniflower oil of stearidonic acid Trans fatty acids // Lipids. 2018. V. 53. P. 255. https://doi.org/10.1002/lipd.12009
  29. Zheng Z., Dai Z., Cao Y. Isolation, purification of DPAn-3 from the seal oil ethyl ester // Eur. J. Lipid Sci. Technol. 2018. V. 120. P. 8. https://doi.org/10.1002/ejlt.201800225
  30. Yee S.M., Lorenz C.D. On the structure and flip-flop of free docosahexaenoic acid in a model human brain membrane // J. Phys. Chem. B. 2021. V. 125. P. 80387. https://doi.org/10.1021/acs.jpcb.1c03929
  31. Vahmani P., Rolland D.C., Gzyl K.E., Dugan M.E.R. Non-conjugated cis/trans 18:2 in beef fat are mainly Δ-9 desaturation products of trans-18:1 isomers // Lipids. 2016. V. 51. P. 1427. https://doi.org/10.1007/s11745-016-4207-0
  32. Dabrowska M., Sokalska K., Gumułka P., Binert-Kusztal Ż., Starek M. Quantification of omega-3 fatty acids in dietary supplements and cooking products available on the polish market by thin-layer chromatography-densitometry // J. Planar Chromatogr. ‒ Mod. TLC. 2019. V. 32. P. 13. https://doi.org/10.1556/1006.2019.32.1.2
  33. Kuksis A., Pruzanski W. Hydrolysis of glycerophosphocholine epoxides by human group IIA, V, and X secretory phospholipase A2 // Lipids. 2021. V. 56. P. 521. https://doi.org/10.1002/lipd.12320
  34. Bazan N.G. Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors // J. Lipid Res. 2021. V. 62. P. 16. https://doi.org/10.1194/jlr.tr120001137
  35. Metelcová T., Vaňková M., Zamrazilová H., Hovhannisyan M, Staňková B., Tvrzická E., Hill M., Hainer V., Včelák J., Kunešjvá M. FADS1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents // Lipids. 2021. V. 56. P. 499. https://doi.org/10.1002/lipd.12317
  36. Wang C., Xu X., Qiu G., Ye W., Li Y., Harris R.A., Jiang C. Grou-targeting SERS screening of total benzodiazepines based on large-size (111) faceted silver nanosheets decorated with zinc oxide nanoparticles // Anal. Chem. 2021. V. 93. P. 3403. https://doi.org/10.1021/acs.analchem.0c04399
  37. Souza I.D., Nan H., Queiroz M.E.C., Anderson J.L. Tunable silver-containing stationary phases for multidimensional gas chromatography // Anal. Chem. 2019. V. 91. P. 4969. https://doi.org/10.1021/acs.analchem.9b00472
  38. Huang S., Claassen F.W., van Beek T.A., Chen B., Zeng J., Zuilhof H., Salentijn G.I.J. Rapid distinction and semiquantitative analysis of THC and CBD by silver-impregnated paper spray mass spectrometry // Anal. Chem. 2021. V. 93. P. 3794. https://doi.org/10.1021/acs.analchem.0c04270
  39. Zhu H., Ali I., Hussain H., Hussain M., Wang X.-B., Song X., Luo G., Zhang Z., Wang Z., Wang D. Extraction and purification of cis/trans asarone from Acorus tatarinowii Schott: accelarated solvent extraction and silver ion coordination high-speed counter-current chromatography // J. Chromatogr. A. 2021. V. 1643. P. 12. https://doi.org/10.1016/j.chroma.2021.462080
  40. Marno A.R., Thurbide K.B. Selective separation of polar unsaturated organics using a water stationary phase in gas chromatography // Chromatographia. 2022. V. 85. P. 105. https://doi.org/10.1007/s10337-021-04125-9
  41. Panickar R., Sobhan C.B., Chakravorti S. Highly efficient amorphous carbon sphere-based superhydrophobic and superoleophilic sponges for oli/water separation // Langmuir. 2021. V. 37. P. 12501. https://doi.org/10.1021/acs.langmuir.1c02307
  42. Yeh V., Goode A., Johnson D., Cowieson N., Bonev B.B. The role of lipid chains as determinants of membrane stability in the presence of styrene // Langmuir. 2022. V. 38. P. 1348. https://doi.org/10.1021/acs.langmuir.1c02332
  43. Białek A., Białek M., Lepionka T., Pachniewics P., Czauderna M. Oxysterols and lipidomic profile of myocardium of rats supplemented with pomengranate seed oil and/or bitter melon aqueous extract — cardio-oncological animal model research // Chem. Phys. Lipids. 2021. V. 235. P. 8. https://doi.org/10.1016/j.chemphyslip.2021.105057
  44. Zhang Y.-Q., Xie Y.-P., Lv W.-J., Hu C.-X., Xu T.-R., Liu X.-N., Zhang R.-F., Xu G.-W., Zhao X.-J. A high throughput lipidomics method and its application in atrial fibrilation based on 96-well plate pretreatment and liquid chromatography-mass spectrometry // J. Chromatogr. A. 2021. V. 1651. P. 8. https://doi.org/10.1016/j.chroma.2021.462271
  45. Hsieh M.K., Yu Y.L., Klauda J.B. All-atom modeling of complex cellular membranes // Langmuir. 2022. V. 38. P. 3. 10.1021/acs.langmuir.1c02084' target='_blank'>https://doi: 10.1021/acs.langmuir.1c02084
  46. Ingolfsson H.I., Bhatia H., Zeppelin T., Bennett W.F.D., Carpenter K.A., Hsu P.-C., Dharuman G., Bremer P.-T., Schiøtt B., Lightstone F.C., Carpenter T.S. Capturing biologically complex tissue-specific membranes at different levels of compositional complexity // J. Phys. Chem. B. 2020. V. 124. P. 7819. https://doi.org/10.1021/acs.jpcb.0c03368
  47. Smorygina A.S., Golysheva E.A., Dzuba S.A. Clustering of stearic acids in model phospholipid membranes revealed by double electron-electron resonance // Langmuir. 2021. V. 37. P. 13909. https://doi.org/10.1021/acs.langmuir.1c02460
  48. Hu L.-C., Xie G.-F., Lan Q., Yu Z., Hu L.-F., Zhu L. Quantitative UPLC–MS/MS to detect DMPC and DPPC applied to paraquat poisoning in cells and serum // Chromatographia. 2022. V. 85. P. 147. 10.1007/s10337-021-04113-z' target='_blank'>https://doi: 10.1007/s10337-021-04113-z
  49. Barker-Tejeda T.C., Villaseňor A., Gonzalez-Riano C., López-López, Á., Gradillas A., Barbas C. In vitro generation of oxidized standards for lipidomics. Application to major membrane lipid components // J. Chromatogr. A. 2021. V. 1651. P. 16. https://doi.org/10.1016/j.chroma.2021.46225
  50. Prithviray M., Kado T., Mayfield J.A., Young D.C., Huang A.D., Motooka D., Nakamura S., Siegrist M.S., Moody D.B., Morita Y.S. Tuberculostearic acid controls mycobacterial membrane compartmentalization // mBio. 2023. V. 14. P. 18. https://doi.org/10.1128/mbio.03396-22
  51. Nitschke P., Lodge S., Kimhofer T., Masuda R., Bong S.-H., Hall D., Schafer H., Spraul M., Pompe N., Diercks T., Bernado-Seisdedos G., Mato J.M., Millet O., Susic D., Henry A. et al. Supramolecular phospholipid biomarkers of inflammation in human serum // Anal. Chem. 2022. V. 94. P. 1333. https://doi.org/10.1021/acs.analchem.1c04576
  52. Kuksis A., Pruzanski W. Destruction of polyunsaturated alkyl/acyl and alkenyl/acyl glycerophosphocholine of plasma lipoproteins during incubation with group V and X phospholipase A2s // Lipids. 2022. V. 57. P. 91. https://doi.org/10.1002/lipd.12333
  53. Pritzl S.D., Konrad D.B., Ober M.F., Richter A.F., Frank J.A., Nickel B., Trauner D., Lohmüller T. Optical membrane control with red light enabled by red-shifted phospholipids // Langmuir. 2022. V. 38. P. 385. https://doi.org/10.1021/acs.langmuir.1c02745
  54. Kim S., Li C., Farese R.V. Jr., Walther T.C., Voth G.A. Key factors governing initial stages of lipid droplet formation // J. Phys. Chem. B. 2022. V. 126. P. 453. https://doi.org/10.1021/acs.jpcb.1c09683
  55. Cabruja M., Priotti J., Domizi P., Papasdorf K., Kroetz D.L., Brunet A., Contrepois K., Snyder M.P. In-depth triacylglycerol profiling using MS3 Q-Trap mass spectrometry // Anal. Chim. Acta. 2021. V. 1184. P. 10. https://doi.org/10.1016/j.aca.2021.339023
  56. Groeneveld G., Dunkle M.N., Pursch M., Mes E.P.C., Schoenmakers P.J., Gargano A.F.G. Investigation of the effects of solvent-mismatch and immiscibility in normal-phase × aqueous reversed-phase liquid chromatography // J. Chromatogr. A. 2022. V. 1665. P. 12. https://doi.org/10.1016/j.chroma.2022.462818
  57. Byrdwell W.C. Comprehensive dual liquid chromatography with quadruple mass spectrometry (LC1MS2 × LC1MS2 = LC2MS4) for analysis of Parnari Curatellifolia and other seed oil triacylglycerols // Anal. Chem. 2017. V. 89. P. 10537. https://doi.org/10.1021/acs.analchem.7b02753
  58. Byrdwell W.C., Kotapati H.K., Goldschmidt R., Jakubec P., Nováková L. Three-dimensional liquid chromatography with parallel second dimensions and quadruple parallel mass spectrometry for adult/infant formula analysis // J. Chromatogr. A. 2021. V. 1661. P. 20. https://doi.org/10.1016/j.chroma.2021.462682
  59. Kalpio M., Linderborg K.M., Fabritius M., Kallio H., Yang B. Strategy for stereospecific characterization of natural triacylglycerols using multidimensional chromatography and mass spectrometry // J. Chromatogr. A. 2021. V. 1641. P. 9. https://doi.org/10.1016/j.chroma.2021.461992
  60. Azemard C., Faure M.C., Stankic S., Chenot S., Ibrahim H., Laporte L., Fontaine P., Goldmann M., de Viguerie L. Influence of unsaturations on the organization and air reactivity of triglyceride monolayers // Langmuir. 2022. V. 38. P. 711. https://doi.org/10.1021/acs.langmuir.1c02613
  61. Macridachis J., Bayés-Garcia L., Calvet T. Solid phase behavior of mixture systems based on tripalmitoyl glycerol and monounsaturated triacylglycerols forming a molecular compound // Phys. Chem. Chem. Phys. 2022. V. 24. P. 3749. https://doi.org/10.1039/d1cp05361b
  62. Sovova H. Modelling of the triacylglycerol stereospecific composition of vegetable oils: I. comparison of model for triacylglycerol assembly // Eur. J. Lipid Sci. Technol. 2022. V. 124. P. 9. https://doi.org/10.1002/ejlt.202000392
  63. Zhang Y.-X., Zhao X.-B., Ha W., Zhang Y.-D., Shi Y.-P. Spatial distribution analysis of phospholipid in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging // J. Chromatogr. A. 2021. V. 1651. P. 9. https://doi.org/10.1016/j.chroma.2021.462302
  64. Wang H., Falcoz S., Berteau J.P. Long-chain fatty acids in bones and their link to submicroscopic vascularization network: NMR assignment and relaxation studies under magic angle spinning conditions in intramuscular bones of atlantic herring fish // J. Phys. Chem. B. 2021. V. 125. P. 4585. https://doi.org/10.1021/acs.jpcb.1c00186
  65. Ren Q.-X., Ma Y.-F., Wang R.-C., Ma Y., Niu T.-J. Triacylglycerol composition of butterfat fractions determines its gastrointestinal fate and postprandial effects: lipidomic analysis of tri-, di-, and mono-acylglycerols and free fatty acids // J. Agric. Food Chem. 2021. V. 69. P. 11033. https://doi.org/10.1021/acs.jafc.1c03291
  66. Peterka O., Jirasko R., Vankova Z., Chocholouskova M., Wolrab D., Kulhanek J., Bures F., Holcapek M. Simple and reproducible derivatization with benzoyl chloride: improvement of sensitivity for multiple lipid classes in RP-UHPLC/MS // Anal. Chem. 2021. V. 93. P. 13835. https://doi.org/10.1021/acs.analchem.1c02463
  67. Xu T.R., Li H., Feng D.S., Dou P., Shi X., Hu Ch., Xu G. Lipid profiling of 20 mammalian cells by capillary microsampling combined with high-resolution spectral switching nanoelectrospray ionization direct-infusion mass spectrometry // Anal. Chem. 2021. V. 93. P. 10031. https://doi.org/10.1021/acs.analchem.1c00373
  68. Palyzová A., Řezanka T. Separation and identification of diacylglycerols containing branched chain fatty acids by liquid chromatography mass spectrometry // J. Chromatogr. A. 2021. V. 1635. P. 10. https://doi.org/10.1016/j.chroma.2020.461708
  69. Gahtori P., Varanasi S.R., Pandey R. Spectral response of interfacial water at different lipid monolayer interfaces upon interaction with charged gold nanoparticles // J. Phys. Chem. C. 2021. V. 125. P. 212345. https://doi.org/10.1021/acs.jpcc.1c06556
  70. Zivanovic V., Milewska A., Leosson K., Kneipp J. Molecular structure and interaction of lipids in the outer membrane of living cells based on surface-enhanced Raman scattering and liposome models // Anal. Chem. 2021. V. 93. P. 10106. https://doi.org/10.1021/acs.analchem.1c00964
  71. Bryant J.M., Malabanan M.M., Vanderloop B.H., Sherrod S.D., McLean J.A., Blind R.D. The acyl chains of phosphoinositide PIP3 alter the structure and function of nuclear receptor steroidogenic factor-1 // J. Lipid Res. 2021. V. 62. P. 14. https://doi.org/10.1016/j.jlr.2021.100081
  72. Ullah Q. Separation and analysis of heavy metal ions by thin-layer chromatography (TLC) – a mini-review (2000–2019) // J. Planar Chromatogr. — Mod. TLC. 2020. V. 33. P. 329. https://doi.org/10.1007/s00764-020-00048-7
  73. Huang S., Qui R., Fang Z., Min K., van Beek T.A., Ma M., Chen B., Zuilhof H., Salentijn G.I.J. Semiquantitative screening of THC analogues by silica gel TLC with Ag(I) retention zone and chromogenic smartphone detection // Anal. Chem. 2022. V. 94. P. 13710. https://doi.org/10.1021/acs.analchem.2c01627
  74. Pchelkin V.P. Characteristic parameters of unsaturated fatty acid residues upon liquid chromatography of their lipids into its silver ion media // Russ. J. Phys. Chem. 2025. V. 99. P. 283. https://doi.org/10.1134/S00360244247033X
  75. Plachká K., Gazárková T., Škop J., Guillarme D., Svec F., Novaková L. Fast optimization of supercritical fluid chromatography-mass spectrometry interfacing using prediction equations // Anal. Chem. 2022. V. 94. P. 4841. https://doi.org/10.1021//acs.analchem.2c00154
  76. Gao H., Bi S., Chai J., Tong Y., Tian M. 2024. ZIF-based boronic acid modified molecular imprinted polymers in combination of silver nanoparticles/glutathione coated graphene oxide adsorbent for the selective enrichment of ellagic acid // J. Chromatogr. A. V. 1714. P. 9. https://doi.org/10.1016/j.chroma.2023.464579
  77. Rathnakumar S., Bhaskar S., Sivaramakrishnan V., Kambhampati N.S.V., Srinivasan V., Ramamurthy S.S. Tecoma stans floral extract-based biosynthesis for enhanced surface plasmon-coupled emission and a preliminary study on fluoroimmunoassay // Anal. Chem. 2024. V. 96. P. 4005. https://doi.org/10.1021/acs.analchem.3c01441
  78. Ali Naghizadeh A., Mahmoudi Zarandi M., Khoshroo S.M.R., Hasanzadeh Davarani F. Investigating the effect of green silver nanoparticles on seed germination and physiological parameters of spinach (Spinacia oleracea L.) under salt stress // Russ. J. Plant Physiol. 2024. V. 71: 102. https://doi.org/10.1134/S102144372460586X

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025