Alu polymorphisms of autophagy and apoptosis regulatory genes as human lifespan factors
- Авторлар: Erdman V.V.1,2, Karimov D.D.1,3, Tuktarova I.А.1, Petintseva A.A.1, Timasheva Y.R.1,2, Nasibullin T.R.1
-
Мекемелер:
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Bashkir State Medical University
- Ufa Research Institute of Occupational Medicine and Human Ecology
- Шығарылым: Том 61, № 1 (2025)
- Беттер: 91-102
- Бөлім: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://ruspoj.com/0016-6758/article/view/686170
- DOI: https://doi.org/10.31857/S0016675825010092
- EDN: https://elibrary.ru/VEFHND
- ID: 686170
Дәйексөз келтіру
Аннотация
To assess the contribution to survival of Alu-insertions in the ACE, PLAT, COL13A1, LAMA2, CDH4, SEMA6A, PKHD1L1, STK38L, HECW1, TEAD1 genes, which are candidates of aging and longevity, amid the senile physiological and pathological phenotype, was carried out the association analysis with life expectancy. Survival and mortality data were obtained for 1,382 elderly people, who were selected from the sample of Tatars residing in the Republic of Bashkortostan (total 1790 people from 18 to 109 years). Mortality risk was higher among carriers of the STK38L Alu-insertion genotype (Ya5ac2145*II, HR = 2.07, P = 0.02). Alu-insertion in the HECW1 and TEAD1 genes has demonstrated a survival protection effect (Ya5NBC182*II, HR = 0.71, P = 0.038 and Ya5ac2013*II, HR = 0.74, P = 0.035 respectively). The survival amid the persons with various clinical phenotypes was associated with the Alu polymorphism of the SEMA6A (Yb8NBC597*ID, HR = 0.54, P = 0.016 for the cerebrovascular diseases), TEAD1 (Ya5ac2013*II, HR = 0.57, P = 0.016 for the cardiovascular pathologies) and LAMA2 (Ya5-MLS19*ID, HR = 0.36, P = 0.03 for multimorbidity status) genes. Thus, the genes involved in the regulation of autophagy and apoptosis were associated with survival and longevity.
Негізгі сөздер
Толық мәтін

Авторлар туралы
V. Erdman
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Хат алмасуға жауапты Автор.
Email: danivera@mail.ru
Ресей, Ufa; Ufa
D. Karimov
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa Research Institute of Occupational Medicine and Human Ecology
Email: danivera@mail.ru
Ресей, Ufa; Ufa
I. Tuktarova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: danivera@mail.ru
Ресей, Ufa
A. Petintseva
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: danivera@mail.ru
Ресей, Ufa
Y. Timasheva
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Email: danivera@mail.ru
Ресей, Ufa; Ufa
T. Nasibullin
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: danivera@mail.ru
Ресей, Ufa
Әдебиет тізімі
- Мушкамбаров Н.Н. Геронтология in polemico. Монография. М.: “Мед. информ. агентство”, 2011. 464 с.
- Чупаха М.В., Белоусова О.Н., Сухатерина Е.В. Характеристика биологического возраста и данных антропометрии при артериальной гипертензии на фоне метаболического синдрома у пациентов среднего и пожилого возраста // Соврем. проблемы здравоохранения и мед. статистики. 2024. № 1. С. 335–347. https://doi.org/10.24412/2312-2935-2024-1-335-347
- Maier H., Jeune B., Vaupel J.W. Exceptional Lifespans. Springer Nature, 2021. 344 p.
- Le Breton A., Bettencourt M.P., Gendrel A.V. Navigating the brain and aging: Exploring the impact of transposable elements from health to disease // Front. Cell. Dev. Biol. 2024. V. 12. https://doi.org/10.3389/fcell.2024.1357576
- Maxwell P.H. What might retrotransposons teach us about aging? // Curr. Genet. 2016. V. 62. P. 277–282. https://doi.org/10.1007/s00294-015-0538-2
- Li M., Schifanella L., Larsen P.A. Alu retrotransposons and COVID-19 susceptibility and morbidity // Hum. Genomics. 2021. V. 15. P. 2–11. https://doi.org/10.1186/s40246-020-00299-9
- Эрдман В.В., Каримов Д.Д., Насибуллин Т.Р. и др. Роль Alu-полиморфизма генов PLAT, PKHD1L1, STK38L и TEAD1 в формировании признака долгожительства // Успехи геронтологии. 2016. Т. 29. № 5. С. 709–716.
- Каримов Д.Д., Эрдман В.В., Насибуллин Т.Р. и др. Alu-инсерционно-делеционный полиморфизм генов COL13A1 и LAMA2: анализ ассоциаций с долгожительством // Генетика. 2016. Т. 52. №. 10. С. 1185–1193. https://doi.org/10.7868/S0016675816100039
- Erdman V.V., Karimov D.D., Tuktarova I.A. et al. Alu deletions in LAMA2 and CDH4 genes are key components of polygenic predictors of longevity // Intern. J. of Mol. Sci. 2023. № 21. https://doi.org/10.3390/ijms232113492
- Wang D., He J., Huang B. et al. Emerging role of the Hippo pathway in autophagy // Cell Death & Disease. 2020. V. 11. № 10. P. 880. https://doi.org/10.1038/s41419-020-03069-6
- Zhou Y.H., Huang T.T., Cheng A.S.L. et al. The TEAD family and its oncogenic role in promoting tumorigenesis // Intern. J. Mol. Sci. 2016. V. 17. № 1. P. 138. https://doi.org/10.3390/ijms17010138
- Reed M.J., Damodarasamy M., Banks W.A. The extracellular matrix of the blood-brain barrier: Structural and functional roles in health, aging, and Alzheimer’s disease // Tissue Barriers. 2019. V. 7. № 4. https://doi.org/10.1080/21688370.2019.1651157
- Carmignac V., Svensson M., Körner Z. еt аl. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A // Human Mol. Genet. V. 20. № 24. P. 4891–4902. https://doi.org/10.1093/hmg/ddr427
- Fard D., Tamagnone L. Semaphorins in health and disease // Cytokine & Growth Factor Reviews. 2021. V. 57. P. 55–63. https://doi.org/10.1016/j.cytogfr.2020.05.006
- Zhang C., Hong C.D., Wang H.L. et al. The role of semaphorins in small vessels of the eye and brain // Pharmacol. Research. 2020. V. 160. https://doi.org/10.1016/j.phrs.2020.105044
- Kaushik A., Parashar S., Ambasta R.K., Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer // Ageing Res. Reviews. 2024. V. 96. P. 102279. https://doi.org/10.1016/j.arr.2024.102279
- Le D., Brown L., Malik K., Murakami S. Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging // Intern. J. Mol. Sci. 2021. V. 22. № 24. https://doi.org/10.3390/ijms222413178
- Loos R.J.F., Yeo G.S.H. The genetics of obesity: from discovery to biology // Nature Rev. Genet. 2022. V. 23. № 2. P. 120–133. https://doi.org/10.1038/s41576-021-00414-z
- Yepes M. The plasminogen activation system promotes neurorepair in the ischemic brain // Current Drug Targets. 2019. V. 20. № 9. P. 953–959. https://doi.org/10.2174/1389450120666181211144550
- Resink T.J., Joshi M.B., Kyriakakis E. Cadherins and cardiovascular disease // Swiss Med. Weekly. 2009. V. 139. № 0910. P. 122–134.
- Cordaux R., Batzer M.A. The impact of retrotransposons on human genome evolution // Nature Rev. Genet. 2009. V. 10. № 10. P. 691–703. https://doi.org/10.1038/nrg2640
- Nefedova L.N., Kim A.I. The role of retroelements in the evolution of animal genomes // Biol. Bul. Reviews. 2022. V. 12. № 1. P. 29–40. https://doi.org/10.1134/S2079086422010042
- Davidson-Pilon C. Lifelines: Survival analysis in Python // J. Open Source Software. 2019. V. 4. № 40. P. 1317. https://doi.org/10.21105/joss.01317
- Cao L., Li H., Liu X. et al. Expression and regulatory network of E3 ubiquitin ligase NEDD4 family in cancers // BMC Cancer. 2023. V. 23. № 1. P. 526. https://doi.org/10.1186/s12885-023-11007-w
- Li Y., Zhang L., Zhou J. et al. Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy // Cell Proliferation. 2015. V. 48. № 3. P. 338–347. https://doi.org/10.1111/cpr.12184
- Li Y., Ozaki T., Kikuchi H. et al. A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner // Oncogene. 2008. V. 27. № 26. P. 3700–3709. https://doi.org/10.1038/sj.onc.1211032
- Quiroga M., Rodríguez-Alons A., Alfonsín G. et al. Protein degradation by E3 ubiquitin ligases in cancer stem cells // Cancers. 2022. V. 14. https://doi.org/10.3390/cancers14040990
- Huang S.S., Hsu L.J., Chang N.S. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system // FASEB Bioadv. 2020. V. 2. P. 234–253. https://doi.org/10.1096/fba.2019-00060
- Гомбоева Д.Е., Брагина Е.Ю., Назаренко М.С., Пузырев В.П. Обратная коморбидность между онкологическими заболеваниями и болезнью Гентингтона: обзор эпидемиологических и биологических доказательств // Генетика. 2020. Т. 56. № 3. С. 260–271. https://doi.org/10.31857/S0016675820030054
- Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond // Physiol. Reviews. 2014. V. 94. № 4. P. 1287–1312. https://doi.org/10.1152/physrev.00005.2014
- Ramaccini D., Pedriali G., Perrone M. et al. Some insights into the regulation of cardiac physiology and pathology by the Hippo pathway // Biomedicines. 2022. V. 10. № 3. P. 726. https://doi.org/10.3390/biomedicines10030726
- Lin K.C., Park H.W., Guan K.L. Regulation of the Hippo pathway transcription factor TEAD // Trends Biochem. Sci. 2017. V. 42. P. 862–872. https://doi.org/10.1016/j.tibs.2017.09.003
- Zhang Y., Ren Y., Li X. et al. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights // Intern. J. Biol. Macromolecules. 2024. https://doi.org/10.1016/j.ijbiomac.2024.132473
- Hergovich A. The roles of NDR protein kinases in Hippo signalling // Genes. 2016. V. 7. № 5. P. 21. https://doi.org/10.3390/genes7050021
- Sharif A.A.D., Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology // Seminars in Cancer Biology. 2018. V. 48. P. 104–114.
- Jonischkies K., Del Angel M., Demiray Y.E. et al. The NDR family of kinases: Essential regulators of aging // Frontiers in Mol. Neurosci. 2024. V. 17. https://doi.org/10.3389/fnmol.2024.1371086
- Rawat P., Thakur S., Dogra S. et al. Diet-induced induction of hepatic serine/threonine kinase STK38 triggers proinflammation and hepatic lipid accumulation // J. Biol. Chemistry. 2023. V. 299. № 5. https://doi.org/10.1016/j.jbc.2023.104678
- Aman Y., Schmauck-Medina T., Hansen M. et al. Autophagy in healthy aging and disease // Nat. Aging. 2021. V. 1. № 8. P. 634–650. https://doi.org/10.1038/s43587-021-00098-4
Қосымша файлдар
