Comparative analysis of the propagation of magnetic variations and equivalent current vortices of geomagnetic Pc5 pulsations along the meridian and azimuth

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a number of events, the propagation velocities of geomagnetic Pc5 pulsations in the azimuthal and meridional directions were analyzed. Two methods were used: by the phase delays of the signal between stations and by the displacement of the vortex centers of their equivalent current systems. The analysis showed that the distribution of pulsations and vortices coincides in direction: along the meridian they predominantly propagate to the north. In most cases, the propagation velocity of pulsations is 5 km/s, and that of vortices is 2 km/s. In azimuth, pulsations and vortices propagate westward, the propagation velocity of pulsations is 10 km/s, and the vortices velocity is 3 km/s. However, in the distribution of azimuthal velocities of both pulsations and vortices there are maxima of comparable magnitude, corresponding to the eastward propagation: pulsations with a velocity of 10 km/s, and vortices with a velocity of 5 km/s. It is concluded that at the ionospheric level, the phase velocities of pulsations measured by us are approximately 2 times greater than the group velocities of the vortices.

About the authors

A. V. Moiseev

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: moiseev@ikfia.ysn.ru
Russian Federation, Yakutsk

V. I. Popov

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences

Email: volts@mail.ru
Russian Federation, Yakutsk

S. A. Starodubtsev

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences

Email: starodub@ikfia.ysn.ru
Russian Federation, Yakutsk

References

  1. Клибанова Ю.Ю., Мишин В.В., Цэгмэд Б., Моисеев А.В. Свойства дневных длиннопериодных пульсаций во время начала магнитной бури // Геомагнетизм и аэрономия Т. 56. № 4. C. 457‒471. 2016.
  2. Макаров Г.А., Баишев Д.Г., Соловьев С.И., Пилипенко В.А., Енгебретсон М., Юмото К. Меридиональная скорость распространения магнитного SI в высокоширотной области // Геомагнетизм и аэрономия Т. 41. № 5. С. 604‒609. 2001.
  3. Мишин В. В., Матюхин Ю.Г. Неустойчивость Кельвина-Гельмгольца на магнитопаузе как возможный источник волновой энергии в магнитосфере Земли // Геомагнетизм и аэрономия. Т. 26. № 6. С. 952‒957. 1986.
  4. Хемминг Р.В. Цифровые фильтры. М.: Сов.радио. 224 с. 1980.
  5. Allan W., White S.P., and Poulter E.M. Impulse-excited hydromagnetic cavity and field-line resonances in the magnetosphere // Planet. Space Sci. V. 34. P. 371‒385. 1986. https://doi.org/10.1016/0032-0633(86)90144-3
  6. Chen L., Hasegawa A. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance // J. Geophys. Res. V. 79(7). P. 1024‒1032. 1974. https://doi.org/10.1029/JA079i007p01024
  7. Chinkin V.E., Soloviev A.A., Pilipenko V.A. Identification of Vortex Currents in the Ionosphere and Estimation of Their Parameters Based on Ground Magnetic Data // Geomagnetism and Aeronomy. V. 60(5). P. 559‒569. 2020. https://doi.org/10.1134/S0016793220050035
  8. Friis-Christensen E., Vennerstrom S., McHenry M.A., Clauer C.R. Ionospheric traveling convection vortices observed near the polar cleft-A triggered response to sudden changes in the solar wind // Geophys. Res. Lett. V. 15. P. 253–256. 1988. https://doi.org/10.1029/GL015i003p00253
  9. Gjerloev J.W. The SuperMAG data processing technique // J. Geophys. Res. V. 117. A09213.2012. https://doi.org/10.1029/2012JA017683
  10. Hughes W.J., Southwood D.J., Mauk B., McPherron R.L. and Barfield J.N. Alfvén waves generated by an inverted plasma energy distribution // Nature. V. 275. P. 43–45. 1978. https://doi.org/10.1038/275043a0
  11. Kataoka R., Fukunishi H., Lanzerott L.J., Rosenberg T.J., Weatherwax A.T., Engebretson M.J., Watermann J. Traveling convection vortices induced by solar wind tangential discontinuities // J. Geophys. Res. Space Physics. V. 107 (A12). SMP 22-1-SMP 22-12. 2002. https://doi.org/10.1029/2002JA009459
  12. Korotova G., Sibeck D., Engebretson M., Balikhin M., Thaller S., Kletzing C., Spence H., and Redmon R. Multipoint observations of compressional Pc 5 pulsations in the dayside magnetosphere and corresponding particle signatures // Ann. Geophys. V. 38. P. 1267–1281. 2020. https://doi.org/10.5194/angeo-38-1267-2020
  13. Leonovich A.S., Mishin V.V., and Cao J.B. Penetration of magnetosonic waves into the magnetosphere: influence of a transition layer // Ann. Geophys. V. 21. P. 1083–1093. 2003. https://doi.org/10.5194/angeo-21-1083-2003
  14. Lühr H., Blawert W. Ground Signatures of Travelling Convection Vortices Solar Wind Sources of Magnetospheric ULF Waves. M.J. Engebretson, et al. (Eds.) // Geophys. Monogr. V. 81, AGU, Washington. P. 231‒251. 1994. https://doi.org/10.1029/GM081p0231
  15. Makarov G.A., Solovyev S.I., Engebretson M., Yumoto K. Azimuth propagation of geomagnetic sudden pulse in high latitudes at the December 15, 1995 sharp decrease in a solar wind density // Geomagnetism and Aeronomy. V. 42. 1. P. 42–50. 2002.
  16. Mishin V.V. Accelerated motions of the magnetopause as a trigger of the Kelvin Helmholtz instability // J. Geophys. Res. V. 98. № 12. P. 21365–21372. 1993. https://doi.org/10.1029/93JA00417
  17. Motoba T., Kikuchi T., Lühr H., Tachihara H., Kitamura T.I., Hayash K, et al. Global Pc 5 caused by a DP2-type ionospheric current system // J. Geophys. Res. V. 107. P. 1032–1047. 2002. https://doi.org/10.1029/2001JA900156
  18. Mann I.R., Voronkov I., Dunlop M., Donovan E., Yeoman T.K., Milling D.K., Wild J., Kauristie K., Amm O., Bale S.D., Balogh A., Viljanen A., Opgenoorth H.J. Coordinated ground-based and Cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind speed interval // Ann. Geophys.V.20. P. 405‒426. 2002. https://doi.org/10.5194/angeo-20-405-2002
  19. Pronin V.E., Zakharov V.I., Pilipenko V.A., Martines-Bedenko V.A., Murr D.L. Response of ionospheric total electron content to convective vortices // Cosmic Res. V. 57. 2. P. 69–78. 2019.
  20. Pulkkinen A., Amm O., Viljanen A., and BEAR working group. Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method // Earth Planets Space. V. 55. P. 117–129. 2003. https://doi.org/10.1186/BF03351739
  21. Saito T. Long-period irregular magnetic pulsation Pi3 // Space Sci. Rev. V. 21. P. 427–467. 1978. https://doi.org/10.1007/BF00173068
  22. Samson J.C., Harrold B.G., Ruohoniemi J.M., Greenwald R.A, Walker A.D.M. Field line resonances associated with MHD waveguides in the magnetosphere // Geophys. Res. Let. V. 19. № 5. P. 441‒444. 1992. https://doi.org/10.1029/92GL00116
  23. Southwood D.J. Some features of field line resonances in the magnetosphere // Planet. Space Sci. V. 22. P. 483‒491. 1974.
  24. Southwood D.J., Dungey J.W., Etherington R.J. Bounce resonant interaction between pulsations and trapped particles // Planet. Space Sci. V. 17. P. 349‒361. 1969. https://doi.org/10.1016/0032-0633(69)90068-3
  25. Vanhamäki H., Juusola L. Introduction to Spherical Elementary Current Systems. // Ionospheric Multi-Spacecraft Analysis Tools. V. 17. P. 5–33. 2020. https://doi.org/10.1007/978-3-030-26732-2_13
  26. Vorobiev V.G. Dynamics of Hall vortices in the daytime high-latitude region // Geomagnetism and Aeronomy. V. 33. № 5. P. 58‒68. 1993.
  27. Wright A.N. Dispersion and wave coupling in inhomogeneous MHD waveguides // J. Geophys. Res. V. 99. P. 159‒167. 1994. https://doi.org/10.1029/93JA02206
  28. Yeoman T.K., Tian M., Lester M., Jones T.B. A study of Pc 5 hydromagnetic waves with equatorward phase propagation // Planet. Space Sci. V. 40. P. 797–810. 1992. https://doi.org/10.1016/0032-0633(92)90108-Z
  29. Zhao H., Liu Y., Zong Q., Yang H., Hu Z., Zhou X., Sun J. Poleward-Moving Black Aurora Associated with Impulse-Excited Field-Line Resonances in the Dawnside Sector: THEMIS and Ground Observations // Universe. 9(6), 250 2023. https://doi.org/10.3390/universe9060250
  30. Zesta E., Hughes W. J., Engebretson M. J. A statistical study of traveling convection vortices using the Magnetometer Array for Cusp and Cleft Studies // J. Geophys. Res. V. 107. P. 18.1‒18.21. 2002. https://doi.org/10.1029/1999JA000386
  31. SuperMAG Web Service API. http://supermag.jhuapl.edu/mag.
  32. Coordinated Data Analysis Web (CDAWeb). http://cdaweb.gsfc.nasa.gov.
  33. Vanhamäki and Juusola 2020.Program code as supplementary material to the paper https://link.springer.com/chapter/10.1007/978-3-030-26732-2_2#Sec18

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences