Seasonal-diurnal features of the medium-scale traveling ionospheric disturbances characteristics in the Asian Region of Russia During years of moderate solar activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on data from a network of oblique-incidence sounding radio paths at mid-latitudes in the Asian region of Russia, a high (up to 40−50%) average-daily recording probability of the medium-scale traveling ionospheric disturbances in years of moderate solar activity has been identified. The daily variation in the recording probability of these disturbances at mid-latitude radio paths in the Asian region of Russia has a pronounced seasonal dependence. For the winter season, there is a daily maximum probability, reaching 100% on some days. In the summer season, it occurs at night hours of local time at the midpoint of the corresponding radio path. The most likely reason for this is the transition from winter to summer pattern of the atmosphere zonal circulation.

Full Text

Restricted Access

About the authors

V. I. Kurkin

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences; Russian New University

Author for correspondence.
Email: vikurkin@yandex.ru
Russian Federation, Irkutsk, Moscow

A. V. Podlesnyi

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences

Email: pav1986@rambler.ru
Russian Federation, Irkutsk

M. V. Cedrik

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences

Email: mark7cedrick@gmail.com
Russian Federation, Irkutsk

A. V. Sofyin

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences; Russian New University

Email: sof@rambler.ru
Russian Federation, Irkutsk; Moscow

References

  1. Вертоградов Г.Г., Денисенко П.Ф., Вертоградова Е.Г., Урядов В.П. Мониторинг среднемасштабных перемещающихся ионосферных возмущений по результатам наклонного ЛЧМ-зондирования ионосферы // Электромагнитные волны и электронные системы. Т. 13. № 5. С. 35–44. 2008.
  2. Подлесный А.В., Брынько И.Г., Куркин В.И., Березовский В.А., Киселев А.М., Петухов Е.В. Многофункциональный ЛЧМ ионозонд для мониторинга ионосферы // Гелиогеофизические исследования. Вып. 4. С. 24–31. 2013.
  3. Софьин А.В., Куркин В.И. Исследование пространственных областей влияния ПИВ на ионограммы наклонного зондирования ионосферы // Труды XXVII Всероссийской открытой научной конференции “Распространение радиоволн” [Электронный ресурс]: научное электронное издание. Калининград: Издательство БФУ им. И. Канта. С. 358–363. 2021.
  4. Heitmann A.J., Cervera M.A., Gardiner-Garden R.S., Holdsworth D.A., MacKinnon A.D., Reid I.M., Ward B.D. Observations and modelling of travelling ionospheric disturbance signatures from an Australian network of oblique angle-of-arrival sounders // Radio Sci. V. 53. № 9. P. 1089–1107. 2018. https://doi.org/10.1029/2018RS006613
  5. Kurkin V.I., Medvedeva I.V., Podlesnyi A.V. Effect of sudden stratosphere warming on characteristics of medium-scale traveling ionospheric disturbances in the Asian region of Russia // Adv. Space Res. 2023. https://doi.org/10.1016/j.asr.2023.09.020
  6. Long C., Yu T., Sun Y.-Y., Yan X., Zhang J., Yang N., Wang J., Xia C., Liang Y., Ye H. Atmospheric gravity wave derived from the neutral wind with 5-minute resolution routinely retrieved by meteor radar at Mohe // Remote Sensing. V. 15. № 2. ID 296. 2023. https://doi.org/10.3390/rs15020296
  7. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Alsatkin S.S., Scherbakov A.A. Studying of the spatial-temporal structure of wavelike ionospheric disturbances on the base of Irkutsk incoherent scatter radar and Digisonde data // J. Atmos. Sol.-Terr. Phy. V. 105–106. P. 350–357. 2013. https://doi.org/10.1016/j.jastp.2013.09.001
  8. Munro G.H. Travelling disturbances in the ionosphere // P. Roy. Soc. Lond. A Mat. V. 202. № 1069. P. 208–223. 1950. https://doi.org/10.1098/rspa.1950.0095
  9. Verhulst T., Altadill D., Mielich J. et al. Vertical and oblique HF sounding with a network of synchronised ionosondes // Adv. Space Res. V. 60. № 8. P. 1644–1656. 2017. https://doi.org/10.1016/j.asr.2017.06.033
  10. Vybornov F., Sheiner O., Kolchev A., Zykov E., Chernov A., Shumaev V., Pershin A. On the results of a special experiment on the registration of traveling ionospheric disturbances by a system of synchronously operating chirp ionosondes // Atmosphere. V. 13. № 1. P. 84–98. 2022. https://doi.org/10.3390/atmos13010084
  11. Wells H.W., Watts J.M., George D.E. Detection of rapidly moving ionospheric clouds // Phys. Rev. V. 69. № 9–10. P. 540–541. 1946. https://doi.org/10.1103/PhysRev.69.540
  12. Zolesi B., Fontana G., Perrone L.et al. A new campaign for oblique incidence ionospheric sounding over Europe and its data application // J. Atmos. Sol.-Terr. Phy. V. 70. № 6. P. 854–869. 2008. https://doi.org/10.1016/j.jastp.2007.02.015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. System of radio paths for oblique chirp sounding of the ionosphere in the Asian region of Russia.

Download (109KB)
3. Fig. 2. Examples of ionograms of the NZ with Z-type disturbances for the Khabarovsk-Irkutsk route with an interval of 5 minutes.

Download (277KB)
4. Fig. 3. Characteristics of SM TPI (Pt, Pd, Tn) in December 2015 for the Khabarovsk–Irkutsk (a, c, e) and Magadan–Irkutsk (b, d, f) radio paths.

Download (333KB)
5. Fig. 4. Characteristics of the SM PIV (Pt, Pd, Tn) for the radio paths Khabarovsk−Irkutsk (a, c, d) and Norilsk−Irkutsk (b, d, e) in March 2016.

Download (287KB)
6. Fig. 5. Same as Fig. 4, for September 2015.

Download (290KB)
7. Fig. 6. Characteristics of the SM PIV (Pt, Pd, Tn) for the radio paths Khabarovsk−Irkutsk (a, c, d) and Norilsk−Irkutsk (b, d, e) in June 2015.

Download (295KB)

Copyright (c) 2024 Russian Academy of Sciences