Evolution of Characteristics of Vertical Electric Current and Magnetic Field in Active Regions of the Sun and their Relation to Powerful Flares

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of evolution of magnetic field and electric currents in active regions of the Sun over a long-time interval is of interest for understanding the processes of accumulation and release of energy in them, leading to various phenomena that affect space weather. In this work, based on the photospheric vector magnetograms of the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, an analysis was made of the evolution of a number of characteristics of the magnetic field and vertical electric current in three active regions 11158, 11675, and 12673 that produced class M and X flares, during the time from their origin in the Eastern hemisphere, during the passage through the solar disk, and until the disappearance near the Western limb with a step of 2 hours. The characteristics under consideration included: the power-law exponent of the probability density function of the absolute value of the vertical electric current density, the maximum of the absolute value of the vertical current density, the signed and unsigned total vertical currents and the unsigned total vertical and horizontal magnetic fluxes, the energy of the nonlinear force-free and potential magnetic fields, the free magnetic energy, and the number of islands with strong vertical current. Some regularities in the behaviour of the characteristics under consideration are found, in particular regarding the occurrence of solar flares. The correlation coefficients between pairs of these characteristics are calculated. Additionally, M. Aschwanden’s approach is shown to be promising for predicting the maximum X-ray class of a flare based on the calculation of the energy of the potential magnetic field in active regions. The results obtained can be used to predict powerful solar flares.

Full Text

Restricted Access

About the authors

А. B. Nechaeva

Space Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: nechaeva.workspace@gmail.com
Russian Federation, Moscow

I. V. Zimovets

Space Research Institute of the Russian Academy of Sciences; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology (National Research University)

Email: ivanzim@iki.rssi.ru
Russian Federation, Moscow; Dolgoprudny, Moscow Region

V. S. Zubik

Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology (National Research University)

Email: chernikovasya@gmail.com
Russian Federation, Dolgoprudny, Moscow Region

I. N. Sharykin

Space Research Institute of the Russian Academy of Sciences

Email: ivan.sharykin@phystech.edu
Russian Federation, Moscow

References

  1. Зверева А.М., Северный А.Б. Магнитные поля и протонные вспышки — 7 июля и 2 сентября 1966 г. // Изв. Крымской астрофиз. обс. 1970. Т. 41—42. С. 97—157.
  2. Зимовец И.В., Нечаева А.Б., Шарыкин И.Н., Низамов Б.А. Источники длиннопериодных рентгеновских пульсаций перед началом солнечных вспышек // Геомагнетизм и аэрономия. 2022. Т. 62. № 4. С. 436—455. https://doi.org/10.31857/S0016794022040186
  3. Ишков В.Н. Всплывающие магнитные потоки — ключ к прогнозу больших солнечных вспышек // Изв. РАН. Сер. физическая. 1998. T. 62. № 9. C. 1835—1839.
  4. Ишков В.Н. Прогноз солнечных вспышечных явлений: солнечные протонные события // Изв. РАН. Сер. физ. 2023. T. 87. № 7. С. 1010—1013. https://doi.org/10.31857/S0367676523701788
  5. Прист Э.Р. Солнечная магнитогидродинамика. М.: Мир, 1985. 592 с.
  6. Северный А.Б. Некоторые проблемы физики Солнца. М.: Наука, 1988. 224 с.
  7. Степанов А.В., Зайцев В.В. Магнитосферы активных областей Солнца и звезд. М.: Физматлит, 2019. 392 с.
  8. Anfinogentov S.A., Stupishin A.G., Mysh’yakov I.I., Fleishman G.D. Record-breaking Coronal Magnetic Field in Solar Active Region 12673 // Astrophys. J. Lett. 2019. V. 880: L29. 5 p. https://doi.org/10.3847/2041-8213/ab3042
  9. Artemyev A., Zimovets I.V., Sharykin I.N., et al. Comparative Study of Electric Currents and Energetic Particle Fluxes in a Solar Flare and Earth Magnetospheric Substorm // Astrophys. J. 2021. V. 923. № 2. https://doi.org/10.3847/1538-4357/ac2dfc
  10. Aschwanden M.J. Global Energetics of Solar Flares. XI. Flare Magnitude Predictions of the GOES Class // Astrophys. J. 2020. V. 897. № 16. 11 p. https://doi.org/10.3847/1538-4357/ab9630
  11. Barczinskyi K., Aulanier G., Janvier M., Schmieder B., Masson S. Electric Current Evolution at the Footpoints of Solar Eruptions // Astrophysical Journal. 2020. V. 895. № 1. 21 p. https://doi.org/10.3847/1538-4357/ab893d
  12. Barnes G., Leka K.D. Inferring Currents from the Zeeman Effect at the Solar Surface // Electric Currents in Geospace and Beyond. Ed. A. Keiling, O. Marghitu & M. Wheatland. ISBN: 9781119324492. American Geophysical Union. 2018. P. 81—91. https://doi.org/10.1002/9781119324522.ch5
  13. Bloomfield D.S., Higgins P.A., McAteer R.T.J., Gallagher P.T. Toward Reliable Benchmarking of Solar Flare Forecasting Methods // Astrophys. J. Lett. 2012. V. 747. № 2. Article ID L41. 7 p. https://doi.org/10.1088/2041-8205/747/2/L41
  14. Bobra M.G., Couvidat S. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm // Astrophys. J. 2015. V. 798. https://doi.org/10.1088/0004-637X/798/2/135
  15. Bobra M.G., Sun X., Hoeksema J.T., Turmon M., Liu Y., Hayashi K., Leka K.D. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPS — Space-Weather HMI Active Region Patches // Solar Phys. 2014. V. 289. P. 3549—3578. https://doi.org/10.1007/s11207-014-0529-3
  16. Fleishman G.D., Pevtsov A.A. Electric Currents in the Solar Atmosphere // Electric Currents in Geospace and Beyond. Edited by Andreas Keiling, Octav Marghitu and Michael Wheatland. ISBN: 9781119324492. American Geophysical Union. 2018. P. 43—65. https://doi.org/10.1002/9781119324522.ch3
  17. Fursyak Yu.A., Abramenko V.I. Possibilities for estimating horizontal electrical currents in active regions on the Sun // Astrophys. 2017. V. 60. № 4. P. 544—552. https://doi.org/10.1007/s10511-017-9505-6
  18. Fursyak Yu.A., Abramenko V.I., Zhukova A.V. Parameters of Electric Currents in Active Regions with Different Levels of Flare Productivity and Different Magnetomorphological Types // Geomagnetism and Aeronomy. 2021. V. 61. № 8. P. 1197—1206. https://doi.org/10.1134/S0016793221080089
  19. Grigoryev V.M., Ermakova L.V. A Study of the Distribution of Electric Currents and Current Helicity in the Photosphere at the Growth Stage of a Bipolar Active Region // Solar Phys. 2002. V. 207. P. 309—321. https://doi.org/10.1023/A:1016207115843
  20. Hoeksema J.T., Liu Y., Hayashi K., et al. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance // Sol. Phys. 2014. V. 289. P. 3483—3530. https://doi.org/10.1007/s11207-014-0516-8
  21. Janvier M., Aulanier G., Bommier V., Schmieder B., Demoulin P., Pariat E. Electric Currents in Flare Ribbons: Observations and Three-dimensional Standard Model // Astrophys. J. 2014. V. 788. № 1. https://doi.org/10.1088/0004-637X/788/1/60
  22. Jiang C., Zou P., Feng X., et al. Magnetohydrodynamic Simulation of the X9.3 Flare on 2017 September 6: Evolving Magnetic Topology // Astrophys. J. 2018. V. 869. № 13. 18 p. https://doi.org/10.3847/1538-4357/aaeacc
  23. Linton M.G., Antiochos S.K., Barnes G., et al. Recent progress on understanding coronal mass ejection/flare onset by a NASA living with a star focused science team // Adv. Space Res. 2023 (in press). https://doi.org/10.1016/j.asr.2023.06.045
  24. Lysenko A.L., Anfinogentov S.A., Svinkin D.S., Frederiks D.D., Fleishman G.D. Gamma-Ray Emission from the Impulsive Phase of the 2017 September 6 X9.3 Flare // Astrophys. J. 2019. V. 877. № 145. 13 p. https://doi.org/10.3847/1538-4357/ab1be0
  25. Musset S., Vilmer N., Bommier V. Hard X-ray emitting energetic electrons and photospheric electric currents // A&A. 2015. V. 580. https://doi.org/10.1051/0004-6361/201424378
  26. Nechaeva A.B., Sharykin I.N., Zimovets I.V., Chen F. Relationship between the Horizontal Gradient of the Vertical Magnetic Field and the Horizontal Electric Current on the Photosphere in a Model Active Region of the Sun // Geomagnetism and Aeronomy. 2021. V. 61. № 7. P. 956—963. https://doi.org/10.1134/S0016793221070148
  27. Nechaeva A.B., Zimovets I.V., Sharykin I.N. Comparison between probability density functions of vertical electric current in solar active regions based on HMI/SDO and SOT/Hinode data // Solar-Terrestrial Physics. 2022. V. 8. P. 63—68. https://doi.org/10.12737/stp-83202210
  28. Nita G.M., Fleishman G.D., Kuznetsov A.A., Anfinogentov S.A., Stupishin A.G., Kontar E.P., Schonfeld S.J., Klimchuk J.A., Gary D.E. Data-constrained Solar Modeling with GX Simulator // Astrophys. J. Supplement Series. 2023. V. 267. № 6. (24 p). https://doi.org/10.3847/1538-4365/acd343
  29. Ofek Eran O. MAAT: MATLAB Astronomy and Astrophysics Toolbox // Astrophysics Source Code Library. 2014. Record ASCL: 1407.005.
  30. Priest E.R., Forbes T.G. The magnetic nature of solar flares // The Astronomy and Astrophysics Review. 2002. V. 10. № 4. P. 313—377. https://doi.org/10.1007/s001590100013
  31. Puschmann K.G., Ruiz Cobo B., Martínez Pillet V. The electrical current density vector in the inner penumbra of a sunspot // Astrophys. J. Lett. 2010. V. 721. № 1. https://doi.org/10.1088/2041-8205/721/1/L58
  32. Schatten K.H., Wilcox J.M., Ness N.F. A model of interplanetary and coronal magnetic fields // Solar Physics. 1969. V. 6. № 3. P. 442—455. https://doi.org/10.1007/BF00146478
  33. Scherrer P.H., Schou J., Bush R.I., et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) // Sol. Phys. 2012. V. 275. P. 207—227. https://doi.org/10.1007/s11207-011-9834-2
  34. Schmieder B., Aulanier G. Solar Active Region Electric Currents Before and During Eruptive Flares // Electric Currents in Geospace and Beyond. Ed. A. Keiling, O. Marghitu & M. Wheatland. ISBN: 9781119324492. American Geophysical Union. 2018. P. 391—406. https://doi.org/10.1002/9781119324522.ch23
  35. Schrijver C.J., DeRosa M.L. Photospheric and heliospheric magnetic fields // Solar Physics. 2003. V. 212. № 1. P. 165—200. https://doi.org/10.1023/A:1022908504100
  36. Schrijver C.J., Aulanier G., Title A.M., Pariat E., Delannee C. The 2011 February 15 X2 Flare, Ribbons, Coronal Front, and Mass Ejection: Interpreting the Three-dimensional Views from the Solar Dynamics Observatory and STEREO Guided by Magnetohydrodynamic Flux-Rope Modeling // Astrophys. J. 2011. V. 738. 23 p. https://doi.org/10.1088/0004-637X/738/2/167
  37. Sharykin I.N., Kosovichev A.G., Zimovets I.V. Energy Release and Initiation of a Sunquake in a C-Class Flare // Astrophys. J. 2015. V. 807. № 1. P. 102. 9 p. https://doi.org/10.1088/0004-637X/807/1/102
  38. Sharykin I.N., Kosovichev A.G. Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of 2017 September 6 // The Astrophysical Journal. 2018. V. 864. № 1. Article ID86. 13 p. https://doi.org/10.3847/1538-4357/aad558
  39. Sharykin I.N., Zimovets I.V., Myshyakov I.I. Flare Energy Release at the Magnetic Field Polarity Inversion Line during the M1.2 Solar Flare of 2015 March 15. II. Investigation of Photospheric Electric Current and Magnetic Field Variations Using HMI 135 s Vector Magnetograms // Astrophys. J. 2020. V. 893. № 2. P. 159. https://doi.org/10.3847/1538-4357/ab84ef
  40. Song H., Tan C., Jing J., Wang H., Yurchyshyn V., Abramenko V. Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions // Solar Physics. 2009. V. 254. № 1. P. 101—125. https://doi.org/10.1007/s11207-008-9288-3
  41. Sun X., Hoeksema J.T., Liu Y., et al. Evolution of Magnetic Field and Energy in a Major Eruptive Active Region Based on SDO/HMI Observation // Astrophys. J. 2012. V. 748. № 77. P. 15. https://doi.org/10.1088/0004-637X/748/2/77
  42. Tadesse T., Pevtsov A.A., Wiegelmann T., MacNeise P.J., Gosain S. Global Solar Free Magnetic Energy and Electric Current Density Distribution of Carrington Rotation 2124 // Solar Physics. 2014. V. 289. № 11. P. 4031—4045. https://doi.org/10.1007/s11207-014-0581-z
  43. Tan B., Ji H., Huang G., Zhou T., Song Q., Huang Y. Evolution of Electric Currents Associated with Two M-Class Flares // Solar Physics. 2006. V. 239. № 1—2. P. 137—148. https://doi.org/10.1007/s11207-006-0120-7
  44. Toriumi S., Wang H. Flare-productive active regions // Living Rev. Sol. Phys. 2019. V. 16. № 3. https://doi.org/10.1007/s41116-019-0019-7
  45. Van Driel-Gesztelyi L., Green L.M. Evolution of Active Regions // Living Rev. Sol. Phys. 2015. V. 12. № 1. https://doi.org/10.1007/lrsp-2015-1
  46. Wang S., Liu C., Liu R., Deng N., Liu Y., Wang H. Response of the Photospheric Magnetic Field to the X2.2 Flare on 2011 February 15 // Astrophys. J. Lett. 2012. V. 745. Article ID L17. 5 p. https://doi.org/10.1088/2041-8205/745/2/L17
  47. Wang R., Liu Y.D., Hoeksema J.T., Zimovets I.V., Liu Y. Roles of Photospheric Motions and Flux Emergence in the Major Solar Eruption on 2017 September 6 // Astrophys. J. 2018. V. 869. № 2. Article ID 90. 11 p. https://doi.org/10.3847/1538-4357/aaed48
  48. Yang S., Zhang J., Zhu X., Song Q. Block-induced Complex Structures Building the Flare-Productive Solar Active Region 12673 // The Astrophysical Journal Letters. 2017. V. 849. № 2. Article ID L21. 7 p. https://doi.org/10.3847/2041-8213/aa9476
  49. Zimovets I.V., Wang R., Liu Y.D., Wang C., Kuznetsov S.A., Sharykin I.N., Struminsky A.B., Nakariakov V.M. Magnetic structure of solar flare regions producing hard X-ray pulsations // J. Atmosph. Solar-Terr. Phys. 2018. V. 174. P. 17—27. https://doi.org/10.1016/j.jastp.2018.04.017
  50. Zimovets I.V., Sharykin I.N., Gan W.Q. Relationships between photospheric vertical electric currents and hard X-ray sources in solar flares: Statistical study // Astrophys. J. V. 891. № 2. 2020a. https://doi.org/10.3847/1538-4357/ab75be
  51. Zimovets I.V., Nechaeva A.B., Sharykin I.N., Gan W.Q. Density distribution of photospheric vertical electric currents in flare-active regions of the Sun // Astrophys. V. 63. P. 408—420. 2020b. https://doi.org/10.1007/s10511-020-09645-0
  52. Zimovets I.V., Sharykin I.N. A brief review on vertical electric currents in flaring active regions at the Sun / Proceedings of the VAK-2021 conference “Astronomy at the Epoch of Multimessenger Studies” (Moscow, August 23–28, 2021). 2022. P. 42—46. https://doi.org/10.51194/VAK2021.2022.1.1.006
  53. Zwaan C. Elements and Patterns in the Solar Magnetic Field // Ann. Rev. Astron. Astrophys. 1987. V. 25. P. 83—111. https://doi.org/10.1146/annurev.aa.25.090187.000503

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution curves of the considered parameters of the magnetic field and electric currents in JSC NOAA 11158 from 02/11/2011 to 02/22/2011.

Download (575KB)
3. Fig. 2. Similar to Fig. 1, but for JSC NOAA 11675 from 02/16/2013 to 02/25/2013.

Download (395KB)
4. Fig. 3. Similar to Fig. 1, but for JSC NOAA 12673 from 08/29/2017 to 09.09.2017.

Download (644KB)
5. Fig. 4. PDF(|jz|) (left) and maps of islands of strong electric current (right) for four time points (from top to bottom): at the beginning of the origin of AO, at the phase of rapid ascent of the magnetic flux, before the beginning of the most powerful flashes and at one of the later time points for AO NOAA 11158.

Download (663KB)
6. Fig. 5. Similar to Fig. 4, but for JSC NOAA 11675.

Download (750KB)
7. Fig. 6. Similar to Fig. 4, but for JSC NOAA 12673.

Download (763KB)
8. Fig. 7. Graphs of paired dependences of the energy of the nonlinear force–free magnetic field Enlfff, the energy of the potential magnetic field Epotf and the free magnetic energy Efree from each other for successive time points in AO 11158 (a–b), 11675 (d–e) and 12673 (w-i). Similar paired dependencies are shown on (y–l), but for a set of data in AO 11158 (rhombuses), 11675 (triangles) and 12673 (squares).

Download (752KB)
9. Fig. 8. Graphs of paired dependences of the peak density of the X-ray flux of flares in the channel 1-8 Å GOES/XRS (i.e. X-ray class) from the considered parameters calculated for time points within 2 hours to the flashes. The asterisks correspond to the flashes in AO 11158, the circle — AO 11675, the diamonds — AO 12673.

Download (154KB)
10. Fig. 9. Observed and predicted peak X-ray flux densities in the 1-8 Å GOES/XRS channel (i.e. X-ray classes) the most powerful solar flares in AO 11158 (a), 11675 (b), 12673 (c) and the dependence of their ratio on the class of maximum flare (d).

Download (356KB)

Copyright (c) 2024 Russian Academy of Sciences