Determination of the Velocity of Ionospheric Disturbances from the Dynamics of Additional U-Shaped Traces on Ionograms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the approaches to solving the inverse problem of determining the parameters of ionospheric disturbances is the multiple solution of the “homing-in” problem with the subsequent comparison of the simulation results with the observed data (ionograms). However, this approach is usually associated with significant calculation time costs, which makes it impossible to process large arrays of sounding data. The method described in this paper makes it possible to quickly determine the horizontal velocity of the ionospheric disturbance by descent rate of an additional U-shaped trace moving to lower virtual heights on the vertical ionograms: in order to calculate the velocity, it is proposed to use the results of the ray tracing obtained for the reference background profiles with the disturbances superimposed on them.

Full Text

Restricted Access

About the authors

O. A. Laryunin

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: laroleg@iszf.irk.ru
Russian Federation, Irkutsk

V. I. Kurkin

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: kurkin@iszf.irk.ru
Russian Federation, Irkutsk

A. A. Rybkina

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: rybkina@iszf.irk.ru
Russian Federation, Irkutsk

A. V. Podlesnyi

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: pav@iszf.irk.ru
Russian Federation, Irkutsk

References

  1. Вертоградов Г.Г., Урядов В.П., Выборнов Ф.И. Моделирование распространения декаметровых радиоволн в условиях волновых возмущений концентрации электронов // Изв. вузов. Радиофизика. 2018. Т. 61. № 6. С. 462—473.
  2. Дэвис К. Радиоволны в ионосфере. М.: Мир, 1973. 503 с.
  3. Cervera M.A., Harris T.J. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves // J. Geophys. Res. — Space. 2014. V. 119. № 1. P. 431—440.
  4. Cooper J., Cummack C.H. The analysis of travelling ionospheric disturbance with nonlinear ionospheric response // J. Atmos. Solar Terr. Phys. 1986. V. 48. № 1. P. 61—64.
  5. Laryunin O. Studying characteristics of traveling ionospheric disturbances using U-shaped traces on vertical incidence ionograms // Adv. Space Res. 2021. V. 67. № 3. P. 1085—1089.
  6. Lobb R.J., Titheridge J.E. The effects of travelling ionospheric disturbances on ionograms // J. Atmos. Terr. Phys. 1977. V. 39. № 2. P. 129—134.
  7. Lou P., Wei N., Guo L., Feng J., Li X., Yang L. Numerical study of traveling ionosphere disturbances with vertical incidence data // Adv. Space Res. 2020. V. 65. № 4. P. 1306—1320.
  8. Munro G.H., Heisler L.H. Cusp type anomalies in variable frequency ionospheric records // Aust. J. Phys. 1956. V. 9. P. 343—357.
  9. Vybornov F., Sheiner O., Kolchev A., Zykov E., Chernov A., Shumaev V., Pershin A. On the results of the special experiment on the registration of traveling ionospheric disturbances by a system of synchronously operating chirp ionosondes // Atmosphere. 2022. V. 13. № 84.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Altitude dependences of the plasma frequency.

Download (40KB)
3. Fig. 2. Ray trajectories corresponding to lateral reflection.

Download (49KB)
4. Fig. 3. Fragments of experimental ionograms from 04.11.2012. The dotted lines on the bottom panel show the levels of the sickle minima.

Download (101KB)
5. Fig. 4. Sliding of synthesized sickles according to a quasi-linear law.

Download (108KB)
6. Fig. 5. The sequence of synthesized sickles obtained for the background profile shown in Fig. 1 (curve 2).

Download (131KB)
7. Fig. 6. Changing the height of the maximum height profile.

Download (107KB)
8. Fig. 7. Fast and slow decline of the sickle for two different background profiles (a) and (b) (Fig. 6) with the same shift of the disturbance by 15 km.

Download (221KB)
9. Fig. 8. Conversion coefficient from the rate of sliding of the sickle to the rate of horizontal movement of the disturbance as a function of the height of the maximum of the background layer.

Download (40KB)
10. Fig. 9. Histogram of the velocity distribution of horizontal motion of ionospheric disturbances.

Download (73KB)

Copyright (c) 2024 Russian Academy of Sciences