Identification of Possible Short-Term Ionospheric Earthquake Precursors for Seismic Events with Intermediate Hypocentrals Depths by Measuring the Standard Parameters of the Mid-Latitude Es Layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in deviations from the background values of the parameters of the sporadic E ionosphere (Es) are studied: the effective (virtual) height hEs and limiting reflection frequency (foEs). Basically, the analysis was carried based on hourly measurement data from several Japanese ground stations for vertical sounding of the ionosphere in order to identify possible short-term ionospheric earthquake precursors with intermediate (from 60 to 300 km) hypocentral depths. All known events (12 earthquakes, from 1969 to 2022) are considered for which the necessary ionospheric data in the Japan region and magnitudes (M) ranging from 6.5 to 7.6 are available. From coincidence of the maxima in changes in the considered Es characteristics on the same day at pairs of stations separated by hundreds of kilometers, the time of appearance of possible ionospheric earthquake precursors was recorded. According to the ionospheric data available during the preparation period for the studied earthquakes, a tendency has been identified according to which the time the moment of the main influence is anticipated depends on the magnitude of the impending earthquake. Similarities and differences in the responses of the ionosphere to the preparation of surface (crustal) earthquakes and earthquakes with an intermediate hypocentral depth are revealed. Another tendency is also revealed: earlier appearance of the identified earthquake precursors with increasing hypocentral depth for earthquakes with an intermediate hypocentral depth at the same distances from the epicenter to the observation point.

Full Text

Restricted Access

About the authors

L. P. Korsunova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation

Author for correspondence.
Email: lpkors@rambler.ru
Russian Federation, Moscow, Troitsk

V. V. Hegai

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation

Email: lpkors@rambler.ru
Russian Federation, Moscow, Troitsk

References

  1. Апродов В.А. Зоны землетрясений. М.: Мысль, 2000. 461 с.
  2. Бычков В.В., Корсунова Л.П., Смирнов С.Э., Хегай В.В. Аномалии в ионосфере и электричестве приземного слоя атмосферы перед Камчатским землетрясением 30.01.2016 г. по данным обсерватории “ПАРАТУНКА” // Геомагнетизм и аэрономия. 2017. Т. 57. № 4. С. 532—540. http://dx.doi.org/10.7868/S0016794017040058
  3. Корсунова Л.П., Легенька А.Д. Обнаружение возможных краткосрочных ионосферных предвестников сильных землетрясений по изменениям ежесуточных характеристик Es // Геомагнетизм и аэрономия. 2021. Т. 61. № 6. С. 803—811. http://dx.doi.org/10.31857/S0016794021050060
  4. Корсунова Л.П., Хегай В.В. Возможные краткосрочные предвестники сильных коровых землетрясений в Японии по данным наземных станций вертикального зондирования ионосферы // Геомагнетизм и аэрономия. 2018. Т. 58. № 1. С. 94—101. http://dx.doi.org/10.7868/S001679401801008X
  5. Корсунова Л.П., Хегай В.В. Оценка эффективности использования интегральных суточных характеристик Еs для выделения краткосрочных ионосферных предвестников сильных землетрясений // Геомагнетизм и аэрономия. 2023. Т. 63. № 2. С. 227—237. http://dx.doi.org/10.31857/S0016794022600417
  6. Михайлов Ю.М. О свойствах предвестников землетрясений в электростатическом поле в приземной атмосфере // Физика Земли. 2007. № 4. С. 76—80.
  7. Пулинец С.А., Узунов Д.П., Давиденко Д.В., Дудкин С.А., Цадиковский Е.И. Прогноз землетрясений возможен?! М.: Тровант, 2014. 144 с.
  8. Сидорин А.Я. Предвестники землетрясений. М.: Наука, 1992. 192 с.
  9. Чавдаров С.С., Часовитин Ю.К., Чернышева С.П., Шефтель В.М. Среднеширотный спорадический слой Е ионосферы. М.: Наука, 1975. 120 с.
  10. Dabas R.S., Das R.M., Sharma K., Pillai K.G.M. Ionospheric precursors observed over low latitudes during some of the recent major earthquakes // J. Atmos. Sol.-Terr. Phy. 2007. V. 69. № 15. P. 1813—1824. https://doi.org/10.1016/j.jastp.2007.09.005
  11. Dobrovolsky I.P., Zubkov S.I., Miachkin V.I. Estimation of the size of earthquake preparation zones // Pure Appl. Geophys. 1979. V. 117. № 5. P. 1025—1044. https://doi.org/10.1007/BF00876083
  12. Hegai V., Zeren Z., Pulinets S. Seismogenic field in the ionosphere before two powerful earthquakes: possible magnitude and observed ionospheric effects (Case study) // Atmosphere. 2023. V. 14. № 5. ID819. https://doi.org/10.3390/atmos14050819
  13. Liu J.Y., Chen Y.I., Chuo Y.J., Chen C.S. A statistical investigation of pre-earthquake ionospheric anomaly // J. Geophys. Res. Space. 2006. V. 111. № 5. ID A05304. https://doi.org/10.1029/2005JA011333
  14. Nestorov G.T. A possible ionospheric presage of the Vrancha earthquake of March 4, 1977 // Comptes rendus de l’Academie Вulgare des Sciences. 1979. V. 32. № 4. P. 443—446.
  15. Perevalova N.P., Sankov V.A., Astafyeva E.I., Zhupityaeva А.S. Threshold magnitude for ionospheric TEC response to earthquakes // J. Atmos. Sol.-Terr. Phy. 2014. V. 108. P. 77—90. http://dx.doi.org/10.1016/j.jastp.2013.12.014
  16. Perrone L., Korsunova L.P., Mikhailov A.V. Ionospheric precursors for crustal earthquakes in Italy // Ann. Geophys. 2010. V. 28. № 4. P. 941—950. https://doi.org/10.5194/angeo-28-941-2010
  17. Pulinets S.A., Boyarchuk K.A. Ionospheric precursors of earthquakes. Berlin: Springer, 2005. 315 p. https://doi.org/10.1007/b137616
  18. Pulinets S., Ouzounov D. The Possibility of Earthquake Forecasting: Learning from nature. Bristol, UK: IOP Publishing Ltd., 2018. 167 p. https://doi.org/10.1088/978-0-7503-1248-6
  19. Sarkar S., Gwal A.K., Parrot M. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes // J. Atmos. Sol.-Terr. Phy. 2007. V. 69. № 13. Р. 1524—1540. https://doi.org/10.1016/j.jastp.2007.06.006
  20. Sharma D.K., Israil M., Chand R., Rai J., Subrahmanya P., Garg S.C. Signature of seismic activities in the F2 region ionospheric electron temperature // J. Atmos. Sol.-Terr. Phy. 2006. V. 68. № 6. P. 691—696. https://doi.org/10.1016/j.jastp.2006.01.005
  21. Xia C., Yang S., Xu G., Zhao B., Yu T. Ionospheric anomalies observed by GPS TEC prior to the Qinghai Tibet region earthquakes // Terr. Atmos. Ocean. Sci. 2011. V. 22. № 2. P. 177—185. https://doi.org/10.3319/TAO.2010.08.13.01(TibXS)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Hourly variations of ∆Hʹes (solid lines with dots) at Paratunka station (upper panel) and Wakkanai station (lower panel) before the earthquake on 30.01.2016 with an intermediate hearth depth of hG = 161 km and magnitude M = 7.2. Line breaks mean no data. Probable KIPZ are marked with a dark fill and highlighted with an ellipse. The epicentral distances (Re) to the corresponding ionospheric station are shown in the figure below the station names.

Download (120KB)
3. Fig. 2. Dependences of logarithms of the values of ΔTH'ES (day) and logarithms of products of ΔTH'ES×R (R is the epicentral distance to the ionospheric station in km) for possible KIPZ observed at Kokubunji station (left panels) and Wakkanai station (right panels) on magnitudes (M) of the considered intermediate earthquakes, constructed according to data from these stations (points). The solid lines show the regression lines obtained by the least squares method, and the dotted lines indicate the values of the standard errors of these regressions (the spread of the dependent variable around the regression line). The correlation coefficient (p) is indicated next to the equation of each regression.

Download (610KB)
4. Fig. 3. Linear regressions (solid lines) for logarithms of products ΔTH'ES×Re (Re is the epicentral distance to the ionospheric station in km, ΔTH'ES — in days) for possible KIPZ observed at Kokubunji station (left panels, large black dots) and Wakkanai station (right panels, black “squares”) depending on the depths of the hypocenters of the foci (hG) of the considered intermediate earthquakes, constructed according to the data of these stations. Regression lines are obtained by the least squares method, and dashed lines indicate the values of the standard errors of these regressions (the spread of the dependent variable around the regression line). The correlation coefficient (p) and the standard error of the regression (S) are indicated under the equation of each regression.

Download (619KB)
5. Fig. 4. The same as Fig. 3, but for the totality of all data on intermediate earthquakes (data from Kokubunji station — large dots, Wakkanai station — black “squares”, from Table. 2 works [Mikhailov, 2007] — six-pointed stars).

Download (289KB)

Copyright (c) 2024 Russian Academy of Sciences