Scenario for the formation of vortexlike structures in a presubstorm arc, taking into account changes in the arc height during its evolution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Activity in a prebreakup auroral arc in the form of vortexlike structures, the appearance/disappearance of which is preceded by an increase/decrease in the brightness of the arc, was studied in the context of a magnetospheric substorm, large-scale ionospheric convection, the situation in the interplanetary medium, and triangulation measurements of the arc height. The structures are observed in the premidnight hours and represent a superposition of two auroral forms: a large-scale bend in the arc that outlines the polar boundary of the diffuse auroras and smaller luminous tongues of luminosity (mini-torches) elongated along the convection on the western slope of the bends. The structures as a whole move against convection, towards substorm activity to the east of the observation area. We attribute the appearance of structures to the propagation of a disturbance deep into the magnetosphere, generated as a result of interaction of the magnetopause with a solar wind inhomogeneity, on the front of which Bz turns southward. The results of triangulation measurements show that the increase in brightness in the prebreakup arc shortly before the appearance of vortexlike structures is accompanied by a decrease in the height of the lower edge of the arc, which we explain by the appearance of a parallel electric field above the arc, which accelerates the precipitating electrons. The role of such a field in the formation of the torchlike structures is discussed in the framework of the interchange instability of the pole boundary of diffuse auroras.

Full Text

Restricted Access

About the authors

V. V. Safargaleev

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences; Polar Geophysical Institute, Russian Academy of Sciences

Author for correspondence.
Email: Vladimir.safargaleev@pgia.ru

St. Petersburg Department

Russian Federation, St. Petersburg; Murmansk region, Apatity

T. I. Sergienko

Swedish Institute of Space Physics

Email: Vladimir.safargaleev@pgia.ru
Sweden, Kiruna

A. L. Kotikov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences; Geophysical Center, Russian Academy of Sciences

Email: Vladimir.safargaleev@pgia.ru

St. Petersburg Department

Russian Federation, St. Petersburg; Moscow

A. V. Safargaleev

LSR Management Company

Email: Vladimir.safargaleev@pgia.ru
Russian Federation, St. Petersburg

References

  1. Волков М.А., Мальцев Ю.П. Желобковая неустойчивость внутренней границы плазменного слоя // Геомагнетизм и аэрономия. T. 26. C. 793—801. 1986.
  2. Галеев А.А., Сагдеев Р.З. Токовые неустойчивости и аномальное сопротивление плазмы // Основы физики плазмы. В двух томах. Дополнение к второму тому. Ред. А.А. Галеев и Р. Судан. М.: Энергоатомиздат, С. 5—37, 1984.
  3. Клейменова Н.Г., Антонова Е.Е., Козырева О.В., Малышева Л.М., Корнилова Т.А., Корнилов И.А. Волновая структура магнитных суббурь в полярных широтах // Геомагнетизм и аэрономия. Т. 52. № 6. С. 785—793. 2012. doi: 10.1134/S0016793212060059
  4. Мазур Н.Г., Федоров Е.Н., Пилипенко В.А. Трансформация БМЗ волн в альфвеновские в гиротропной продольно-неоднородной плазме // Физика плазмы. Т. 33. № 6. С. 526—533. 2007.
  5. Сафаргалеев В.В., Митрофанов В.Н., Козловский А.Е. Комплексный анализ полярной суббури по данным магнитных, оптических и радарных наблюдений в окрестности Шпицбергена // Геомагнетизм и аэрономия. Т. 58. № 6. С. 828—844. 2018. doi: 10.1134/S0016793218040151
  6. Akasofu S.-I., Kimball D.S. The dynamics of the aurora—I: Instabilities of the aurora // J. Atm. Terr .Phys. V. 26. № 2. P. 0—211. 1964. https://doi.org/10.1016/0021-9169(64)90147-3
  7. Atkinson G. Decoupling of convection in the magnetosphere from the ionosphere by parallel electric fields // AGU Fall Meeting 2001, abstract No SM51A-0784, AGU. 2001.
  8. Davis T.N., Hallinan, T.J. Auroral Spirals 1. Observations // J. Geophys. Res. V. 81. № 22. P. 3953—3958. 1976. https://doi.org/10.1029/JA081i022p03953
  9. Golovchanskaya I., Kornilov I., Kornilova T. East-west type precursor activity prior to the auroral onset: Ground-based and THEMIS observations // J. Geophys. Res. V. 120. № 2. P. 1109—1123. 2015. https://doi.org/10.1002/2014JA020081
  10. Gussenhoven M.S., Hardy D.A., Heinemann N. Systematics of the equatorward diffuse auroral boundary // J. Geophys. Res. V. 88. № 7. P. 5692—5708. 1983. https://doi.org/10.1029/JA088iA07p05692
  11. Gustavsson B. Tomographic inversion for ALIS noise and resolution // J. Geophys. Res. V. 103. № 11. P. 26621—26632. 1998. https://doi.org/10.1029/98JA00678
  12. Haerendel G. and Frey H. The onset of a substorm and the mating instability // J. Geophys. Res. V. 126. e2021JA029492.2021. https://doi.org/10.1029/2021JA029492
  13. Hallinan T.J., Davis T.N. Small-scale auroral arc distortions // Planet. Space Sci. V. 18. № 12. P. 1735—1744. 1970. https://doi.org/10.1016/0032-0633(70)90007-3
  14. Johnstone A.D. Pulsating aurora // Nature. V. 274. № 5667. P. 119—126. 1978. doi: 10.1038/274119a0
  15. Kalmoni N.M.E., Rae I.J., Murphy K.R., C. Forsyth C., Watt C.E.J., Owen C.J. Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism // Geophys. Res. Lett. V. 44. № 5. P. 2078—2087. 2017. https://doi.org/10.1002/2016GL071826
  16. Keiling A., Angelopoulos V., Weygand J.M., et al. THEMIS ground-space observations during the development of auroral spirals // Ann. Geophys. V. 27. № 11. P. 4317—4332. 2009. doi: 10.5194/angeo-27-4317-2009
  17. Keiling A., Shiokawa K., Uritsky V., et al. Auroral signatures of the dynamic plasma sheet. In: Keiling A. et al. (eds): Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Monograph. Series. V. 197. P. 317—336. American Geophysical Union, Washington, D.C. 2012. https://doi.org/10.1029/2012GM001231
  18. Kozlovsky A., Aikio A., Turunen T., Nilsson H., Sergienko T., Safargaleev V., Kauristie K. Dynamics and electric currents of morningside Sun-aligned auroral arcs // J. Geophys. Res. V. 112. № 6. A063061of12. 2007. https://doi.org/10.1029/2006JA012244
  19. Li B., Marklund G., Karlsson T., et al. Inverted-V and low-energy broadband electron acceleration features of multiple auroras within a large-scale surge // J. Geophys. Res. V. 118. № 9. P. 5543—5552. 2013. https://doi.org/10.1002/jgra.50517
  20. Lyons L.R., Nishimura Y., Liu J., Bristow W.A., Zou Y., Donovan E.F. Verification of substormonset from intruding flow channels with high-resolution SuperDARN radar flow maps // J. Geophys. Res. V. 127. e2022JA030723. 2022. https://doi.org/10.1029/2022JA030723
  21. Maltsev Yu.P., Leontyev S.V., Lyatsky W.B. Pi-2 pulsations as a result of evolution of an Alfven impulse originating in the ionosphere during a brightening of aurora // Planet. Space Sci. V. 22. P. 1519—1533. 1974. doi: 10.1016/0032-0633(74)90017-8
  22. Motoba T., Ohtani S., Anderson B.J., Korth H., Mitchell D., Lanzerotti L.J., Shiokawa K., Connors M., Kletzing C.A., Reeves G.D. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations // J. Geophys. Res. V. 120. № 10. P. 8707—8722. 2015. https://doi.org/10.1002/2015JA021676
  23. Oguti T. Rotational deformations and related drift motions of auroral arcs. J. Geophys. Res. V. 79. № 25. P. 3861—3865. 1974. https://doi.org/10.1029/JA079i025p03861
  24. Panov E.V., Baumjohann W., Nakamura R., Pritchett P.L., Weygand J.M., Kubyshkina M.V. Ionospheric footprints of detached magnetotail interchange heads // Geophys. Res. Lett. V. 46. № 13. P. 7237—7247. 2019. https://doi.org/10.1029/2019GL083070
  25. Partamies N., Kauristie K., Pulkkinen T.I., Brittnacher M. Statistical study of auroral spirals // J. Geophys. Res. V. 106. № 8. P. 15415—15428. 2001. https://doi.org/10.1029/2000JA900172
  26. Pudovkin M.I., Steen A., Brändström U. Vorticity in the magnetospheric plasma and its signatures in aurora dynamics // Space Sci. Rev. V. 80. P. 411—444. 1997. https://doi.org/10.1023/A:1004916808514
  27. Rae I. J., Mann I.R., Murphy K.R. et al. Timing and localization of ionospheric signatures associated with substorm expansion phase onset // J. Geophys. Res. V. 114. № 1 A00C09. 2009. https://doi.org/10.1029/2008JA013559
  28. Safargaleev V., Sergienko T., Nilsson H., Kozlovsky A., Massetti S., Osipenko S., Kotikov A. Combined optical, EISCAT and magnetic observations of the omega bands/Ps6 pulsations and an auroral torch in the late morning hours: a case study // Ann. Geophys. V. 23. № 5. P. 1821—1838. 2005. doi: 10.5194/angeo-23-1821-2005
  29. Safargaleev V., Kozlovsky A., Honary F., Voronin A. Geomagnetic disturbances on ground associated with particle precipitation during SC // Ann. Geophys. V. 28. № 1. P. 247—265. 2010. https://doi.org/10.5194/angeo-28-247-2010
  30. Safargaleev V.V., Kozlovsky A.E., Mitrofanov V.M. Polar substorm on 7 December 2015: preonset phenomena and features of auroral breakup // Ann. Geophys. V. 38. № 4. P. 901—918. 2020. https://doi.org/10.5194/angeo-38-901-2020
  31. Safargaleev V., Sergienko T., Hosokawa K. Oyam S-I., Ogawa Y., Miyoshi Y., Kurita S., Fujii R. Altitude of pulsating arcs as inferred from tomographic measurements // Earth Planets Space. V. 74. № 1. Article id.31. 2022. https://doi.org/10.1186/s40623-022-01592-8
  32. Samson J.C., Cogger L.L., Pao Q. Observations of field line resonances, auroral arcs, and auroral vortex structures // J. Geophys. Res. V. 101. № 8. P. 17373—17383. 1996. https://doi.org/10.1029/96JA01086
  33. Sato N., Wright D.M., Carlson C.W., Ebihara Y., Sato M., Saemundsson T., Milan S., Lester M. Generation region of pulsating aurora obtained simultaneously by the FAST satellite and a Syowa-Iceland conjugate pair of observatories // J. Geophys. Res. V. 109. № 10. A10201. 2004. https://doi.org/10.1029/2004JA010419
  34. Shiokawa K., Nosé M., Imajo S., et al. Arase observation of the source region of auroral arcs and diffuse auroras in the inner magnetosphere // J. Geophys. Res. V. 125. № 8. Article id. e27310. 2020. https://doi.org/10.1029/2019JA027310
  35. Solovyev S.I., Baishev D.G., Barkova E.S., Molochushkin N.E., Yumoto K. Pi2 magnetic pulsations as response on spatio-temporal oscillations of auroral arc current system // Geophys. Res. Letters. V. 27. № 13. P. 1839—1842. 2000. https://doi.org/10.1029/2000GL000037
  36. Swift D. The possible relationship between the auroral breakup and the interchange instability of the ring current // Planet. Space Sci. V. 15. № 8. P. 1225—1226. 1967. doi: 10.1016/0032-0633(67)90179-1
  37. Trondsen T., Cogger L. A survey of small-scale spatially periodic distortions of auroral forms // J. Geophys. Res. V. 103. № 5. P. 9405—9415. 1998. https://doi.org/10.1029/98JA00619
  38. Voronkov I., Rankin R., Frycz P., Tikhonchuk V.T., Samson J.C. Coupling of shear flow and pressure gradient instabilities // J. Geophys. Res. V. 102. № 5. P. 9639—9650. 1997. https://doi.org/10.1029/97JA00386
  39. Webster H.F., Hallinan T.J. Instabilities in charge sheets and current sheets and their possible occurrence in the aurora // Radio Sci. V. 8. № 5. P. 475—482. 1975. https://doi.org/10.1029/RS008i005p00475
  40. Yamamoto T., Inoe S., Meng C.-I. Formation of auroral omega bands in the paired region 1 and region 2 field-aligned current system // J. Geophys. Res. V. 102. № 2. P. 2531—2544. 1997. https://doi.org/10.1029/96JA02456
  41. Yamamoto T. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval // J. Geophys. Res. V. 117. № 2. A02209. 2012. https://doi.org/10.1029/2011JA017011

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Interval of observation of luminosity waves in the pre-substorm arc (highlighted in gray) in the context of substorm activity: (a) - magnetic disturbances in the region including the region of optical observations. Long white, black, and gray arrows mark the onset of substorms in AMD, SOR, and BJN, respectively. The moments of brightening of the pre-substorm arc and the appearance of vortex-like structures on it are designated T0 and T1, respectively; (b) - keogram and a series of frames demonstrating the evolution of auroras over KRN. The pre-substorm arc drifting toward the equator is shown by a short white arrow. The short black arrow indicates the bend of the diffuse arc boundary along which the height was selected.

Download (398KB)
3. Fig. 2. Localization of Pc5 pulsation along the meridian (a). The interval under study is highlighted in gray; the original frame (top panel) and its projection to an altitude of 105 km (bottom panel) at the time point marked on the PEL magnetogram with a black arrow (b). The positions of the KRN camera and magnetic stations are shown by circles and squares, respectively. The arc segment marks the approximate position of the equatorial boundary of the region occupied by diffuse auroras.

Download (371KB)
4. Fig. 3. Features of auroral vortices: (a) - passage of vortices through the field of view of the camera from west to east, vertical arrows with the same numbers show the position of the corresponding structure before and after its passage through the zenith of KRN; (b) - fine structure of auroral vortices at an altitude of 105 km, the white horizontal arrow shows the direction of movement of the vortices, the black arrow shows the direction of convection.

Download (481KB)
5. Fig. 4. Direction of ionospheric convection according to SuperDARN data in the area of optical observations (shown in a circle) before the event under consideration (a); model calculations of convection before, during and after the event under consideration (b). The segments indicate the magnitude and direction of the plasma velocity.

Download (203KB)
6. Fig. 5. Position of the THC and GEOTAIL satellites (a). The straight line segment with an arrow shows the orientation and direction of motion of the solar wind inhomogeneity front; variations of the IMF Bz component on two satellites (b).

Download (189KB)
7. Fig. 6. Variations in the flux and energy of electrons, as well as the magnetic field on the GEOTAIL satellite, caused by the passage through the satellite of a wave disturbance generated by the solar wind inhomogeneity front with a periodic variation of the IMF Bz component (top panel).

Download (185KB)
8. Fig. 7. The height of the pre-substorm arc in the process of its evolution: (a) - illustration of the stages of selecting the height of the glow due to the best alignment of the distinct polar edge of the arc with the area of condensation of isolines; (b) is the result of selecting the height of the bend on the blurred polar edge of the arc (shown by the black arrow here and in Fig. 1c) shortly before the intensification of the glow and the appearance of auroral vortices. The auroras over KRN are presented in pseudocolor; the distribution of the glow intensity in the TJA frame is conveyed by isolines.

Download (574KB)
9. Fig. 8. Luminosity weakening in the pre-substorm arc according to KRN camera data (a); results of triangulation measurements of the height of the pre-substorm arc before and after the weakening of luminosity (b).

Download (563KB)

Copyright (c) 2024 Russian Academy of Sciences