Response of the lower and upper ionosphere after the eruption of Shiveluch volcano on april 10, 2023

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The disturbances in the lower ionosphere and in the region of the maximum of the ionospheric F2 layer during the Shiveluch volcanic eruption in April 2023 are analyzed based on data from ground-based magnetometers and GPS radio sounding of the ionosphere. The magnetic stations were located at distances of 455 km (Paratunka) and 752 km (Magadan) from the volcano. The variations in the magnetic field and total electron content of the ionosphere were studied as characteristics of the ionospheric response to this event. An analysis of the measurements showed that the impact on the ionosphere is carried out by seismic Rayleigh waves and atmospheric acoustic-gravity waves generated by volcanic explosions. The energy of several explosions was estimated from the amplitude of the ionospheric signal in the total electron content.

Full Text

Restricted Access

About the authors

S. A. Riabova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences

Author for correspondence.
Email: ryabovasa@mail.ru
Russian Federation, Moscow; Moscow

S. L. Shalimov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: ryabovasa@mail.ru
Russian Federation, Moscow

References

  1. Адушкин В.В., Спивак А.А. Воздействие экстремальных природных событий на геофизические поля в среде обитания // Физика Земли. № 5. С. 6‒16. 2021.
  2. Куницын В.Е., Шалимов С.Л. Ультранизкочастотные вариации магнитного поля при распространении в ионосфере акустико-гравитационных волн // Вестник МГУ. Сер. 3. Физика. Астрономия. № 5. С. 75‒78. 2011.
  3. Куницын В.Е., Нестеров И.А., Шалимов С.Л. Мегаземлетрясение в Японии 11 марта 2011 г.: регистрация ионосферных возмущений по данным GPS // Письма в ЖЭТФ. Т. 94. № 8. С. 657‒661. 2011.
  4. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Наука. 1986.
  5. Павлов В.А. Акустический импульс над эпицентром землетрясения // Геомагнетизм и аэрономия. Т. 26. № 5. С. 807–815. 1986.
  6. Соловьева М.С., Падохин А.М., Шалимов С.Л. Мегаизвержение вулкана Хунга 15 января 2022 г.: регистрация ионосферных возмущений посредством СДВ и ГНСС радиопросвечивания // Письма в ЖЭТФ. Т. 116. № 11. С. 816−822. 2022.
  7. Шалимов С.Л. Атмосферные волны в плазме ионосферы. М.: ИФЗ РАН, 390 с. 2018.
  8. Adhikari B., Khatiwada R., Chapagain N.P. Analysis of geomagnetic storms using wavelet transforms // Journal of Nepal Physical Society. V. 4. № 1. P. 119−124. 2017.
  9. Dautermann T., Calais E., Mattioli G.S. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufriere Hills Volcano, Montserrat // J. Geophys. —Sol. Eа. V. 114. N B02. 2009. doi: 10.1029/2008JB005722
  10. Grinsted A., Moor J.C., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical timeseries // Nonlinear Proc. Geoph. V. 11. P. 561–566. 2004.
  11. Grossmann A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape // SIAM J. Math. Anal. V. 15. № 4. P. 723–736. 1984.
  12. Heki K. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances // Geophys. Res. Lett. V. 33. N L14303. 2006. doi: 10.1029/2006GL026249
  13. Kelley M.C. The Earth’s ionosphere: Plasma physics and electrodynamics. San Diego, California: Academic Press, Inc. 487 p. 1989.
  14. Maraun D., Kurths J. Cross wavelet analysis: significance testing and pitfalls // Nonlinear Proc. Geoph. V. 11. P. 505–514. 2004.
  15. Meyer Y. Wavelets: Algorithms and applications. Philadelphia: Society for Industrial and Applied Mathematics, 134 p. 1993.
  16. Nakashima Y., Heki K., Takeo A., Cahyadi M.N., Aditiya A., Yoshizawa K. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals // Earth Planet. Sc. Lett. V. 434. P. 112−116. 2016.
  17. Riabova S.А. Application of wavelet analysis to the analysis of geomagnetic field variations // J. Phys. Conf. Ser. V. 1141. 2018. doi: 10.1088/1742-6596/1141/1/012146
  18. Riabova S.A. Study of the multifractality of geomagnetic variations at the Belsk Observatory // Dokl. Earth Sci. V. 507. № 2. P. 299–303. 2022. DOI: 0.1134/S1028334X22700489.
  19. Shults K., Astafyeva E., Adourian S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events // J. Geophys. Res. − Space. V. 121. № 10. P. 10,303–10,315. 2016. doi: 10.1002/2016JA023382
  20. Torrence C., Compo G.P. A practical guide to wavelet analysis // B. Am. Meteorol. Soc. V. 79. P. 605−618. 1998.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scalograms of geomagnetic variations at station. Paratunka during six episodes of increased activity of the Shiveluch volcano from 12:00 UT to 17:00 UT on April 10, 2023 (from 00 LT to 5 LT on April 11, 2023) (a) and from 17:00 UT to 22:00 UT April 10, 2023 (from 5 LT to 10 LT April 11, 2023) (b); white dashed lines – cone of influence.

Download (385KB)
3. Fig. 2. Scalograms of geomagnetic variations at station. Magadan during six episodes of increased activity of the Shiveluch volcano from 12.00 UT on April 10, 2023 to 01.00 UT on April 11, 2023 (from 0 LT to 13 LT on April 11, 2023); white dashed lines – cone of influence.

Download (238KB)
4. Fig. 3. Geographic map with projections of GPS satellite trajectories for the receiving station pett (the station location is indicated by a triangle). The direction of the trace projection is indicated by an arrow indicating the start and end times (UT = LT − 12). The maximum TEC variation for each trajectory projection is indicated by a circle. The location of the Shiveluch volcano is indicated by a star.

Download (303KB)
5. Fig. 4. Filtered TEC signals and calculations of the areas of the compression phase (dash-dotted line) and rarefaction (shaded line): for the “station - satellite” pair pett-G20 for the interval 12:00‒14:00 UT April 10, 2023 (00:00‒02 :00 LT April 11, 2023) (a), pett-G30 for the interval 13:30−15:00 UT April 10, 2023 (01:30‒03:00 LT April 11, 2023) (b), pett-G13 for the interval 15:00‒17:00 UT April 10, 2023 (03:00‒05:00 LT April 11, 2023) (c); point - the maximum value of the filtered signal on the considered interval.

Download (303KB)

Copyright (c) 2024 Russian Academy of Sciences