Latituditual Structure of Dayside Polar Cusp Precipitation
- Authors: Vorobjev V.G.1, Yagodkina O.I.1, Antonova E.E.2,3, Kirpichev I.P.3
-
Affiliations:
- Polar Geophysical Institute
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Space Research Institute, Russian Academy of Sciences
- Issue: Vol 63, No 6 (2023)
- Pages: 736-750
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/650970
- DOI: https://doi.org/10.31857/S0016794023600448
- EDN: https://elibrary.ru/PWQIHH
- ID: 650970
Cite item
Abstract
The results of observations of low-altitude spacecraft crossing the daytime sector of the auroral zone and of high-apogee spacecraft in the equatorial plane of the magnetosphere were analyzed in order to identify the main processes leading to the formation of dayside polar cusps. Observations from the DMSP F7 spacecraft were used to analyze the latitudinal characteristics of ion precipitation in the cusp region and to study the latitudinal profile of ion pressure in the cusp depending on the IMF parameters. A significant difference was found in identifying the cusp boundaries using an automated data processing system and direct analysis of spacecraft observations. It is shown that for small negative values of the Bz-component of the IMF (〈Bz〉 = –3.0 nT), an ordinary feature of the cusp is the latitudinal profile of the ion pressure (Pi) with a width of ~1° of latitude with two maxima, one of which is located in the equatorward and the other in the poleward of the cusp. For large negative Bz values (–6, –8 nT), the polar maximum in the latitudinal profile Pi disappears; only the equatorial maximum remains, the Pi level at the maximum increases, and the width of the cusp decreases to ~0.7°. For Bz IMF > 0, the most characteristic is the Pi profile with a maximum ion pressure in the polar part of the cusp. The cusp for Bz > 0 is located at higher latitudes than for Bz < 0, and its average latitudinal width increase to ~1.4° of latitude. In the prenoon sector MLT, the most typical for periods with a large negative By-component of the IMF (〈By〉 = –6.3 nT, 〈Bz〉 = –1.7 nT) is a cusp with a width of ~1.4° of latitude with a flat top in the latitudinal Pi profile. Comparison of the pressure distributions observed at low heights with data from high-apogee satellites confirmed the possibility of describing the formation of the cusp as a diamagnetic cavity and using observations in the cusp to determine the ion pressure in the magnetosheath.
About the authors
V. G. Vorobjev
Polar Geophysical Institute
Email: vorobjev@pgia.ru
Apatity, Murmansk oblast, Russia
O. I. Yagodkina
Polar Geophysical Institute
Email: oksana41@mail.ru
Apatity, Murmansk oblast, Russia
E. E. Antonova
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Space Research Institute, Russian Academy of Sciences
Email: elizaveta.antonova@gmail.com
Moscow, Russia; Moscow, Russia
I. P. Kirpichev
Space Research Institute, Russian Academy of Sciences
Author for correspondence.
Email: ikir@iki.rssi.ru
Moscow, Russia
References
- – Антонова E.E., Воробьев В.Г., Кирпичев И.П., Ягодкина О.И. Сравнение распределения давления плазмы в экваториальной плоскости и на малых высотах в магнитоспокойных условиях // Геомагнетизм и аэрономия. Т. 54. № 3. С. 300–303. 2014. https://doi.org/10.7868/S001679401403002X
- – Воробьев В.Г., Ягодкина О.И., Антонова Е.Е. Давление ионов в различных областях авроральных высыпаний дневного сектора // Геомагнетизм и аэрономия. Т. 60. № 6. С. 740–750. 2020. https://doi.org/10.31857/S0016794020060140
- – Воробьев В.Г., Ягодкина О.И. Особенности структуры высыпаний дневного полярного каспа при северном межпланетном магнитном поле // Известия РАН. Серия физическая. Т. 86. № 12. С. 1804–1809. 2022. https://doi.org/10.31857/S0367676522120304
- – Воробьев В.Г., Ягодкина О.И., Антонова Е.Е., Кирпичев И.П. Влияние экстремальных уровней динамического давления солнечного ветра на структуру ночных авроральных высыпаний // Геомагнетизм и аэрономия. Т. 62. № 6. С. 713–720. 2022. https://doi.org/10.31857/S0016794022060165
- – Пулинец М.С., Рязанцева М.О., Антонова Е.Е., Кирпичев И.П. Зависимость параметров магнитного поля вблизи подсолнечной точки магнитосферы от межпланетного магнитного поля по данным эксперимента THEMIS // Геомагнетизм и аэрономия. Т. 52. № 6. С. 769–778. 2012.
- – Antonova E.E., Vorobjev V.G., Kirpichev I.P., Yagodkina O.I., Stepanova M.V. Problems with mapping the auroral oval and magnetospheric substorms // Earth, Planets and Space. V. 67. https://doi.org/10.1186/s40623-015-0336-6
- – Antonova E.E., Stepanova M., Kirpichev I.P., Ovchinnikov I.L., Vorobjev V.G., Yagodkina O.I., Riazanseva M.O., Vovchenko V.V., Pulinets M.S., Znatkova S.S., Sotnikov N.V. Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere // J. Atm. Sol.-Ter. Phys. V. 177. P. 103–114, 2018. https://doi.org/10.1016/j.jastp.2017.10.013
- – Antonova E.E., Stepanova M.V. The impact of turbulence on physics of the geomagnetic tail // Front. Astron. Space Sci. V. 8. 622570. https://doi.org/10.3389/fspas.2021.622570
- – Antonova E.E., Stepanova M.V., Kirpichev I.P. Main features of magnetospheric dynamics in the conditions of pressure balance // J. Atm. Sol.-Ter. Phys. V. 242. 2023. https://doi.org/10.1016/j.jastp.2022.105994
- – Baker K.B., Wing S. A new magnetic coordinate system for conjugate studies at high latitudes // J. Geophys. Res. V. 94. № A7. P. 9139–9144. 1989. https://doi.org/10.1029/JA094iA07p09139
- – Bogdanova Y.V., Owen C.J., Siscoe G., Fazakerley A.N., Dandouras I., Marghitu O. et al. Cluster observations of the magnetospheric low-latitude boundary layer and cusp during extreme solar wind and interplanetary magnetic field conditions: I. 10 November 2004 ICME // Solar Physics. V 244. P. 201–232. 2007. https://doi.org/10.1007/s11207-007-0417-1
- – Escoubet C.P., Berchem J., Bosqued J.M., Trattner K.J., Taylor M., Pitout F., Vallat C., Laakso H., Masson A., Dunlop M., Reme H., Dandouras I., Fazakerley A. Two sources of magnetosheath ions observed by Cluster in the mid-altitude polar cusp // Adv. Space Res. V. 41. № 10. P. 1528–1536. 2008. https://doi.org/10.1016/j.asr.2007.04.031
- – Esmaeili A., Kalaee M.J. Double-cusp simulation during northward IMF using 3D PIC global code // Astrophys. Space Sci. V. 362. P. 124–129. 2017. https://doi.org/10.1007/s10509-017-3098-8
- – Fuselier S.A., Trattner K.J., Petrinec S.M. Cusp observations of high- and low-latitude reconnection for northward interplanetary magnetic field // J. Geophys. Res. V. 105. № A1. P. 253–266. 2000. https://doi.org/10.1029/1999JA900422
- – Kirpichev I.P., Antonova E.E., Stepanova M. Ion leakage at dayside magnetopause in case of high and low magnetic shears // J. Geophys. Res. Space Physics. V. 122. № 8. P. 8078–8095. 2017. https://doi.org/10.1002/2016JA023735
- – Newell P.T., Meng C.-I. The cusp and the cleft/boundary layer: low-altitude identification and statistical local time variation // J. Geophys. Res. V.93. № A12. P. 14 549–14 556. 1988. https://doi.org/10.1029/JA093iA12p14549
- – Newell P.T., Meng C.-I., Sibeck D.G., Lepping R. Some low-altitude cusp dependence on interplanetary magnetic field // J. Geophys. Res. V. 94. P. 8921–8927. 1989. https://doi.org/10.1029/JA094iA07p08921
- – Newell P.T., Wing S., Meng C.-I., Sigillito V. The auroral oval position, structure, and intensity of precipitation from 1984 onward – An automated on-line data base // J. Geophys. Res. V. 96. № A4. P. 5877–5882. 1991. https://doi.org/10.1029/90JA02450
- – Newell P.T., Meng C.-I. Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions // J. Geophys. Res. V. 99. № A1. P. 273–286. 1994. https://doi.org/10.1029/93JA02273
- – Newell P.T., Sotirelis T., Liou K., Meng C.-I., Rich F.J. Cusp latitude and the optimal solar wind coupling function // J. Geophys. Res. V. 111. A09207. 2006. https://doi.org/10.1029/2006JA011731
- – Onsager T.G., Kletzing C.A., Austin J.B., MacKiernan H. Model of magnetosheath plasma in the magnetosphere: Cusp and mantle particles at low-altitudes // J. Geophys. Res. V. 20. № 6. P. 479–482. 1993. https://doi.org/10.1029/93GL00596
- – Panov E.V., Buchner J., Franz M., Korth A., Savin S.P., Reme H., Fornacon R.-H. High-latitude Earth’s magnetopause outside the cusp: Cluster observations // // J. Geophys. Res. V. 113. A01220. 2008. https://doi.org/10.1029/2006JA012123
- – Pitout F., Escoubet C.P., Klecker B., Dandouras I. Cluster survey of the mid-altitude cusp – Part 2: Large-scale morphology // Ann. Geophys. V. 27. P. 1875–1886. 2009. www.ann-geophys.net/27/1875/2009
- – Pitout F., Bogdanova Y.V. The polar cusp seen by Cluster // J. Geophys. Res. V. 126. № 9. 2021. https://doi.org/10.1029/2021JA029582
- – Rakhmanova L., Riazantseva M., Zastenker G. Plasma and magnetic field turbulence in the Earth’s magnetosheath at ion scales // Front. Astron. Space Sci. V. 7. 616635. 2021. https://doi.org/10.3389/fspas.2020.616635
- – Reiff P.H., Hill, T.W., Burch J.L. Solar wind plasma injection at the dayside magnetospheric cusp// J. Geophys. Res. V. 82. № 4. P.479–491.1977. https://doi.org/10.1029/JA082i004p00479
- – Ruohoniemi J.M., Greenwald R.A. Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations // J. Geophys. Res. V. 101. № A10. P. 21 743–21 763. 1996. https://doi.org/10.1029/96JA01584
- – Siscoe G., Kaymaz Z., Bogdanova, Y.V. Magnetospheric cusps under extreme conditions: Cluster observations and MHD simulations compared // Solar Physics. V. 244. P. 189–199. 2007. https://doi.org/10.1007/s11207-007-0359-7
- – Sonnerup B.U., Paschmann O.G., Papamastorakis I., Sckopke N., Haerendel G., Bame S.J., Asbridge J.R., Gosling J.T., Russell C.T. Evidence for magnetic field reconnection at the Earth’s magnetopause // J. Geophys. Res. V. 86. P. 10 049–10 067. 1981. https://doi.org/10.1029/JA086iA12p10049
- – Stepanova M., Antonova E.E., Bosqued J.-M. Study of plasma pressure distribution in the inner magnetosphere using low-altitude satellites and its importance for the large-scale magnetospheric dynamics // Adv. Space Res. V. 38. № 8. P. 1631–1636. 2006. https://doi.org/10.1016/j.asr.2006.05.013
- – Tsyganenko N.A., Andreeva V.A. Empirical modeling of dayside magnetic structures associated with polar cusps // J. Geophys. Res. V. 123. № A11. P. 9078–9092. 2018. https://doi.org/10.1029/2018JA02588
- – Wing S., Newell P.T., Onsager T.G. Modeling the entry of magnetosheath electrons into the dayside ionosphere // J. Geophys. Res. V. 101. № A6. P. 13155–13167. 1996. https://doi.org/10.1029/96JA00395
- – Wing S., Newell P.T. Center plasma sheet ion properties as inferred from ionospheric observations // J. Geophys. Res. V. 103. № A4. P. 6785–6800. 1998. https://doi.org/10.1029/97JA02994
- – Wing S., Newell P.T., Rouhoniemi J.M. Double cusp: model prediction and observational verification // J. Geophys. Res. V. 106. № A11. P. 25 571–25 593. 2001. https://doi.org/10.1029/2000JA000402
Supplementary files
