Equatorial Plasma Bubbles: Zonal Thermosphere Wind Influence
- Authors: Sidorova L.N.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Science
- Issue: Vol 63, No 6 (2023)
- Pages: 798-805
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/650975
- DOI: https://doi.org/10.31857/S0016794023600369
- EDN: https://elibrary.ru/EGQLOX
- ID: 650975
Cite item
Abstract
There are a number of the theoretical studies pointing to the key role of the zonal thermosphere winds in the equatorial plasma bubble (EPB) generation and evolution. However, there are insufficient observational data to confirm the relationship between these phenomena. To study this relationship, the detailed comparative and correlation analysis of the LT-variations of the EPB occurrence probability and the zonal thermosphere wind velocity was carried out. The data from the EPB observations recorded aboard the ISS-b satellite (~972–1220 km) during the solstice and equinox periods were used. The data from the zonal thermosphere wind velocity observations obtained aboard the CHAMP satellite (~380–450 km) were also used. It was found that these characteristics are similar, when they are compared, and have very strong correlation (R 0.9) in summer, strong correlation (R 0.8) in winter and (R 0.79) at equinox. It was found that in all seasons the delay in the development of the EPB occurrence probability maxima with respect to the maxima of the west wind velocity is 1–3 h. It is in good agreement with the estimation of the time of the seeding perturbation development and the EPB rise to the topside ionosphere altitudes. The results can be considered a new confirmation of the theoretical conclusion (Kudeki model) about the key influence of the zonal west thermosphere winds on the equatorial plasma bubble generation.
About the authors
L. N. Sidorova
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Science
Author for correspondence.
Email: lsid@izmiran.ru
108840, Troitsk, Moscow, Russia
References
- − Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука. 499 с. 1998.
- − Сидорова Л.Н., Филиппов С.В. Долготная статистика плазменных “пузырей”, видимых на высотах верхней ионосферы в концентрации Не+ // Геомагнетизм и аэрономия. Т. 53. № 1. С. 64–77. 2013.
- − Сидорова Л.Н., Филиппов С.В. Долготная статистика плазменных “пузырей”: Возможное влияние тропосферы // Геомагнетизм и аэрономия. Т. 56. № 4. С. 514–524. 2016.
- − Сидорова Л.Н., Филиппов С.В. Экваториальные плазменные “пузыри”: Влияние термосферных ветров, модулированных приливной волной DE3 // Геомагнетизм и аэрономия. Т. 58. № 2. С. 225–233. 2018.
- − Сидорова Л.Н., Филиппов С.В. Ветровая подготовка генерации экваториальных плазменных “пузырей”// Геомагнетизм и аэрономия. Т. 59. № 3. С. 333–339. 2019.
- − Сидорова Л.Н. Экваториальные плазменные “пузыри”: Изменчивость широтного распределения с высотой // Геомагнетизм и аэрономия. Т. 61. № 4. С. 445–456. 2021. https://doi.org/10.31857/S0016794021040167
- − Abdu M.A., de Medeiros R.T., Sobral J.H.A. et al. Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations // J. Geophys. Res. V. 88. P. 9197–9204. 1983.
- − Hanson W.B., Coley W.R., Heelis R.A. et al. Fast equatorial bubbles // J. Geophys. Res. V. 102. № A2. P. 2039–2045. 1997.
- − Huba J.D., Joyce G., Krall J. Three-dimensional equatorial spread F modeling // Geophys. Res. Lett. V. 35. L10102. 2008. https://doi.org/10.1029/2008GL033509
- − Hysell D.L., Kudeki E. Collisional shear instability in the equatorial F region ionosphere// J. Geophys. Res. V. 109. № A11301. 2004. https://doi.org/10.1029/2004JA010636
- − Hysell D.L., Larsen M.F., Swenson C.M., Wheeler T.F. Shear flow effects at the onset of equatorial spread F // J. Geophys. Res. V. 111. № A11317. 2006. https://doi.org/10.1029/2006JA011923
- − Kudeki E., Bhattacharyya S. Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F // J. Geophys. Res. V. 104. № 12. P. 28163–28170. 1999.
- − Kudeki E., Akgiray A., Milla M.A. et al. Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves // J. Atmos. Solar-Terr. Phys. V. 69. № 17–18. P. 2416–2427. 2007.
- − Liu H., Lühr H., Watanabe S. et al. Zonal winds in the in equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies // J. Geophys. Res. V. 111. № A07307. 2006. https://doi.org/10.1029/2005JA011415
- − Liu H., Yamamoto M., Lühr H. Wave-4 pattern of the equatorial mass density anomaly: A thermospheric signature of tropical deep convection // J. Geophys. Res. Lett. V. 36. № L18104. 2009. https://doi.org/10.1029/2009GL039865
- − McClure J.P., Hanson W.B., Hoffman J.F. Plasma bubbles and irregularities in the equatorial ionosphere // J. Geophys. Res. V. 82. № 19. P. 2650–2656. 1977.
- − RRL. Summary Plots of Ionospheric Parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories Ministry of Posts and Telecommunications. V. 1–3. 1983.
- − RRL. Summary Plots of Ionospheric Parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories Ministry of Posts and Telecommunications. Special Report. V. 4. 1985.
- − Sidorova L.N., Filippov S.V. Topside ionosphere He+ density depletions: seasonal/longitudinal occurrence probability // J. Atmos. Solar-Terr. Phys. V. 86. P. 83–91. 2012https://doi.org/10.1016/j.jastp.2012.06.013
- − Sidorova L.N., Filippov S.V. Four-peak longitudinal distribution of the equatorial plasma bubbles observed in the topside ionosphere: Possible troposphere tide influence // Adv. Space Res. V. 61. № 6. P. 1412–1424. 2018. https://doi.org/10.1016/j.asr.2017.12.035
- − Woodman R.F., La Hoz C. Radar observations of F-region equatorial irregularities // J. Geophys. Res. V. 81. P. 5447− 5466. 1976.
Supplementary files
