Disturbances in the Magnetosphere and Ionosphere during Spotless Sun

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Analysis of geomagnetic and ionospheric activity is performed for 541 disturbed days during spotless
Sun (Kp > 3.0) from 1995 to 2021. Variations of the global ionospheric indices WU (positive disturbances
of total electron content), WL (negative disturbances), their range WE and the planetary index Wp are analyzed.
The source W-index characterizes a measure of deviation of the instant total electron content from the
quiet median varying from −4 to +4 with a step 1, and the global indices WU, WL, WE, Wp are derived from
the global maps GIM-TEC of Jet Propulsion Laboratory, JPL. Investigation of the seasonal dependence has
revealed two levels of the ionosphere disturbances: the low disturbance of the ionosphere during 1996‒1998
and 2018‒2021 and the high disturbance during 2004‒2010 and 2016‒2017. The seasonal ionosphere variations
are different for two sets of the data. The seasonal variations of the solar wind velocity Vsw near the Earth
orbit are first identified for the 1st data set displaying the peaks at the equinoxes similar to variations of the
Kp-index. The 2nd set of the high disturbance of the ionosphere refers to the epoch of transition from the high
solar activity SA to low SA characterized by the total restructuring of the physical conditions on the Sun

About the authors

T. L. Gulyaeva

Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN)

Author for correspondence.
Email: gulyaeva@izmiran.ru
Troitsk, Moscow, 142191 Russia

References

  1. − Афраймович Э.Л., Астафьева Э.И., Живетьев И.В. Солнечная активность и глобальное электронное содержание // ДАН. Т. 409. № 3. С. 399‒402. 2006.
  2. − Гуляев Р.А. Действительно ли солнечная корона отсутствовала в период Маундеровского минимума? // Астрономия-2018. Т. 2: Солнечно-земная физика – современное состояние и перспективы. М.: ГАИШ. С. 55‒58. 2018. https://doi.org/10.31361/eaas.2018-2.013
  3. − Гуляев Р.А., Гуляева Т.Л. Возрастание мощности центральной корональной дыры к минимуму солнечной активности: реакция ионосферы // Астрономия-2018. Т. 2: Солнечно-земная физика – современное состояние и перспективы. М.: ГАИШ. С. 59‒62. 2018. https://doi.org/10.31361/eaas.2018-2.014
  4. − Гуляева Т.Л., Хараламбус Х. Трехчасовые индексы ионосферной активности // Геомагнетизм и аэрономия. Т. 61. № 6. С. 741‒750. 2021. https://doi.org/10.31857/S0016794021060079
  5. − Ишков В.Н. Итоги и уроки 24 цикла – первого цикла второй эпохи пониженной солнечной активности // Астрон. журн. Т. 99. № 1. С. 54–69. 2022. https://doi.org/10.31857/S0004629922020050
  6. − Котонаева Н.Г., Коломина М.В., Михайлов В.В., Цыбуля К.Г., Филиппов М.Ю. Эффективность коррекции ионосферных моделей по данным одного ионозонда вертикального радиозондирования в период низкой солнечной активности // Геомагнетизм и аэрономия. Т. 61. № 1. С. 85‒93. 2021. https://doi.org/10.31857/S0016794021010089
  7. − Тимченко А.В., Бессараб Ф.С., Клименко М.В., Радиевский А.В., Клименко В.В. Корреляционный анализ глобальных ионосферных карт полного электронного содержания в марте 2015 г. // Геомагнетизм и аэрономия. Т. 62. № 3. С. 345‒354. 2022. https://doi.org/10.31857/S0016794022030191
  8. − Chen Y., Liu L., Wan W. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? // J. Geophys. Res. ‒ Space. V. 116. A04304. 2011. https://doi.org/10.1029/2010JA016301
  9. − Clette F., Svalgaard L., Vaquero J.M., Cliver E.W. Revisiting the sunspot number: a 400-year perspective on the solar cycle // Space Sci. Rev. V. 186. № 1–4. P. 35–103. 2014. https://doi.org/10.1007/s11214-014-0074-2
  10. − Goncharenko L.P., Tamburri C.A., Tobiska W.K., Schonfeld S.J., Chamberlin P.C., Woods T.N., Didkovsky L., Coster A.J., Zhang S.-R. A new model for ionospheric total electron content: The impact of solar flux proxies and indices // J. Geophys. Res. ‒ Space. V. 126. № 2. e2020JA028466. 2021. https://doi.org/10.1029/2020JA028466
  11. − Gulyaeva T.L., Stanislawska I. Derivation of a planetary ionospheric storm index // Ann.-Geophysicae. V. 26. № 9. P. 2645‒2648. 2008. https://doi.org/10.5194/angeo-26-2645-2008
  12. − Gulyaeva T.L., Arikan F., Stanislawska I. Probability of occurrence of planetary ionosphere storms associated with the magnetosphere disturbance storm time events // Adv. Radio Sci. V. 12. P. 261‒266. 2014. https://doi.org/10.5194/ars-12-261-2014
  13. − Gulyaeva T.L., Arikan F. Statistical discrimination of global post-seismic ionosphere effects under geomagnetic quiet and storm conditions // Geomat. Nat. Haz. Risk. V. 8. № 2. P. 509‒524. 2017. https://doi.org/10.1080/19475705.2016.1246483
  14. − Gulyaeva T.L., Gulyaev R.A. Coherent changes of solar and ionospheric activity during long-lived coronal mega-hole from Carrington rotation CR2165 to CR2188 // J. Atmos. Solar-Terr. Phys. V. 179. P. 165‒173. 2018. https://doi.org/10.1016/j.jastp.2018.07.007
  15. − Gulyaeva T.L., Arikan F., Sezen U., Poustovalova L.V. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model // J. Atmos. Solar-Terr. Phys. V. 172. P. 122‒128. 2018. https://doi.org/10.1016/j.jastp.2018.03.025
  16. − Gulyaeva T.L., Haralambous H., Stanislawska I. Persistent perturbations of ionosphere at diminution of solar and geomagnetic activity during 21–24 solar cycles // J. Atmos. Solar-Terr. Phys. V. 221. Art. № 105706. 2021. https://doi.org/10.1016/j.jastp.2021.105706
  17. − Gulyaeva T.L., Stanislawska I., Lukianova R. Arctic−Antarctic asymmetry of the ionospheric weather // Adv. Space Res. 2022. https://doi.org/10.1016/j.asr.2022.05.008
  18. − Hathaway D.H. The Solar Cycle // Living Rev. Sol. Phys. V. 12. № 1. Art № 4. 2015. https://doi.org/10.1007/lrsp-2015-4
  19. − Hernndez–Pajares M., Juan J.M., Sanz J. et al. The IGS VTEC maps: A reliable source of ionospheric information since 1998 // J. Geodesy. V. 83. № 3–4. P. 263–275. 2009. https://doi.org/10.1007/s00190-008-0266-1
  20. − Laštovička J. The best solar activity proxy for long-term ionospheric investigations // Adv. Space Res. V. 68. № 6. P. 2354‒2360. 2021. https://doi.org/10.1016/j.asr.2021.06.032
  21. − Lean J.L. Short term, direct indices of solar variability // Space Sci. Rev. V. 94. № 1‒2. P. 39‒51. 2000. https://doi.org/10.1023/A:1026726029831
  22. − Marques de Souza Franco A., Hajra R., Echer E., Bolzan M.J.A. Seasonal features of geomagnetic activity: a study on the solar activity dependence // Ann. Geophysicae. V. 39. № 5. P. 929–943. 2021. https://doi.org/10.5194/angeo-39-929-2021
  23. − Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. e2020SW002641. 2021. https://doi.org/10.1029/2020SW002641
  24. − Nandy D., Muñoz–Jaramillo A., Martens P.C.H. The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations // Nature. V. 471. P. 80–82. 2011 https://doi.org/10.1038/nature09786
  25. − Nava B., Rodríguez-Zuluaga J., Alazo-Cuartas K., Kashcheyev A., Migoya-Orué Y., Radicella S.M., Amory-Mazaudier C., Fleury R. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm // J. Geophys. Res. ‒ Space. V. 121. № 4. P. 3421–3438. 2016. https://doi.org/10.1002/2015JA022299
  26. – Schaer S., Gurtner W., Feltens J. IONEX: The IONosphere Map Exchange Format: Version 1.1. // Darmstadt, Germany: ESA/ESOC. 2015. ftp.aiub.unibe.ch/ionex/draft/ ionex11.pdf
  27. − Shue J.-H., Newell P.T., Liou K., Meng C.-I. Solar wind density and velocity control of auroral brightness under normal interplanetary magnetic field conditions // J. Geophys. Res. ‒ Space. V. 107. № A12. 1428. 2002. https://doi.org/10.1029/2001JA009138
  28. − Solanki S.K. Sunspots: an overview // Astron. Astrophys. Rev. V. 11. № 2–3. P. 153–286. 2003. https://doi.org/10.1007/s00159-003-0018-4
  29. − Solomon S.C., Qian L., Burns A.G. The anomalous ionosphere between solar cycles 23 and 24 // J. Geophys. Res. ‒ Space. V. 118. № 10. P. 6524–6535. 2013. https://doi.org/10.1002/jgra.50561
  30. − Somaila K., Yacouba S., Louis Z.J. Solar wind and geomagnetic activity during two antagonist solar cycles: Comparative study between the solar cycles 23 and 24 // Int. J. Phys. Sci. V. 17. № 3. P. 57‒66. 2022. https://doi.org/10.5897/IJPS2022.4998
  31. − Tapping K.F. The 10.7 cm solar radio flux (F10.7) // Space Weather. V. 11. № 7. P. 394–406. 2013. https://doi.org/10.1002/swe.20064
  32. − Viereck R.A., Floyd L.E., Crane P.C., Woods T.N., Knapp B.G., Rottman G., Weber M., Puga L.C., DeLand M.T. A composite Mg II index spanning from 1978 to 2003 // Space Weather. V. 2. № 10. S10005. 2004. https://doi.org/10.1029/2004SW000084
  33. − Zerbo J.L., Richardson J.D. The solar wind during current and past solar minima and maxima // J. Geophys. Res. ‒ Space. V. 120. № 12. P. 10 250‒10 256. 2015. https://doi.org/10.1002/2015JA021407

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (323KB)
3.

Download (536KB)
4.

Download (641KB)
5.

Download (1MB)
6.

Download (646KB)
7.

Download (837KB)

Copyright (c) 2023 Т.Л. Гуляева