Thermal Regime of the Lithosphere under the Taimyr Peninsula According to Geomagnetic Data
- Authors: Filippova A.I.1,2, Filippov S.V.1,2
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Issue: Vol 63, No 3 (2023)
- Pages: 391-402
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/651018
- DOI: https://doi.org/10.31857/S0016794022600600
- EDN: https://elibrary.ru/PMLOKG
- ID: 651018
Cite item
Abstract
This article presents the results of a study of the thermal regime of the lithosphere under the Taimyr
Peninsula and adjacent territories (70°–80° N, 80°–115° E) based on geomagnetic data. Spectral analysis of
the lithospheric geomagnetic field given by the EMAG2v3 model was performed using the centroid method.
The calculations we performed showed that the minimum depths of the top boundary of lithospheric magnetic
sources (<2.5 km) are typical for the entire Taimyr fold belt and the considered part of the Siberian Platform,
and the maximum (>6 km) for the North Kara Basin. The position of the top boundary of the magnetically
active layer of the lithosphere above the bottom of the sedimentary layer under the Yenisei-Khatanga
and Khatanga-Lena basins can be associated with the widespread intrusion of basalt traps into the sedimentary
layer. The minimum depths of the bottom boundary of lithospheric magnetic sources (<36 km) are confined
to the Eurasian Basin and neighboring territories of the Laptev Sea shelf and the islands of the Severnaya
Zemlya archipelago, which indicates the greatest heating of the lithosphere under them within the
region under consideration. The depth of the bottom boundary reaches maximum values (≥48 km) under the
Yenisei-Khatanga and North Kara basins and the Siberian Platform, indicating the existence of the cold and,
accordingly, thick lithosphere here, which is confirmed by other independent geophysical data
About the authors
A. I. Filippova
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN); Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: aleirk@mail.ru
Moscow, Troitsk, 142191 Russia; Moscow, 113556 Russia
S. V. Filippov
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN); Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Author for correspondence.
Email: sfilip@izmiran.ru
Moscow, Troitsk, 142191 Russia; Moscow, 113556 Russia
References
- – Афанасенков А.П., Никишин А.М., Унгер А.В., Бордунов С.И., Луговая О.В., Чикишев А.А., Яковишина Е.В. Тектоника и этапы геологической истории Енисей-Хатангского бассейна и сопряженного Таймырского орогена // Геотектоника. № 2. С. 23–42. 2016. https://doi.org/10.7868/S0016853X16020028
- – Верниковский В.А. Геодинамическая эволюция Таймырской складчатой области. Новосибирск: Изд-во СО РАН, 203 с. 1996.
- – Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Недра. Кн. 2. 334 с. 1990.
- – Самыгин С.Г. Особенности строения и геодинамической эволюции Таймыра в неопротерозое // Литосфера. Т. 18. № 1. С. 5–19. 2018. https://doi.org/10.24930/1681-9004-2018-18-1-005-019
- – Середкина А.И. Поверхностно-волновая томография Арктики по данным дисперсии групповых скоростей волн Рэлея и Лява // Физика Земли. № 3. С. 58–70. 2019. https://doi.org/10.31857/S0002-33372019358-70
- – Середкина А.И., Филиппов С.В. Глубины залегания магнитных источников в Арктике и их связь с параметрами литосферы // Геология и геофизика. Т. 62. № 7. С. 902–916. 2021. https://doi.org/10.15372/GiG2020162
- – Сорохтин Н.О., Лобковский Л.И., Никифоров С.И. Козлов Н.Е. Геодинамическая эволюция нефтегазоносных бассейнов Карско-Баренцевоморского шельфа России // Арктика: экология и экономика. Т. 18. № 2. С. 14–25. 2015.
- – Филиппова А.И., Филиппов С.В. Глубины залегания литосферных магнитных источников и тепловой режим литосферы под Восточно-Сибирским морем // Физика Земли. № 4. С. 71–84. 2022а. https://doi.org/10.31857/S0002333722040032
- – Филиппова А.И., Филиппов С.В. Глубины залегания литосферных магнитных источников вдоль профиля “Ковдор–ГСЗ-76” (Балтийский щит – Баренцево море) // Геомагнетизм и Аэрономия. Т. 62. № 6. С. 781–792. 2022б. https://doi.org/10.31857/S0016794022060049
- – Яновский Б.М. Земной магнетизм. Л.: Ленинградский университет, 592 с. 1978.
- – Artemieva I.M. Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution // Tectonophysics. V. 416. P. 245–277. 2006. https://doi.org/10.1016/j.tecto.2005.11.022
- – Artemieva I.M. The continental lithosphere: reconciling thermal, seismic, and petrologic data // Lithos. V. 109. P. 23–46. 2009. https://doi.org/10.1016/j.lithos.2008.09.015
- – Bouligand C., Glen J.M.G., Blakely J. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization // J. Geophys. Res. V. 114. B11104. 2009. https://doi.org/10.1029/2009JB006494
- – Cammarano F., Guerri M. Global thermal models of the lithosphere // Geophys. J. Int. V. 210. P. 56–72. 2017. https://doi.org/10.1093/gji/ggx144
- – Carillo-de la Cruz J.L., Prol-Ledesma R.M., Gabriel G. Geostatistical mapping of the depth to the bottom of magnetic sources and heat flow estimations in Mexico // Geothermics. V. 97. 102225. 2021. https://doi.org/10.1016/j.geothermics.2021.102225
- – Cherepanova Y., Artemieva I.M., Thybo H., Chemia Z. Crustal structure of the Siberian Craton and the West Siberian Basin: an appraisal of existing data // Tectonophysics. V. 609. P. 154–183. 2013. https://doi.org/10.1016/j.tecto.2013.05.004
- – Correa R.T., Vidotti R.M., Guedes V.J.C.B., Scandolara J.E. Mapping the Thermal Structure of the Amazon Craton to Constrain the Tectonic Domains // J. Geophys. Res.: Solid Earth. V. 127. № 1. e2021JB023025. 2022. https://doi.org/10.1029/2021JB023025
- – Didas M.M., Armadillo E., Hersis G.P., Cumming W., Rizello D. Regional thermal anomalies derived from magnetic spectral analysis and 3D gravity inversion: implications for potential geothermal sites in Tanzania // Geothermics. V. 103. 102431. 2022. https://doi.org/10.1016/j.geothermics.2022.102431
- – Drachev S.S., Malyshev N.A., Nikishin A.M. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview / Petroleum geology: from mature basins to new frontiers – Proc. 7th Petroleum Geology Conference. Geological Society, London, P. 591–619. 2010. https://doi.org/10.1144/0070591
- – Filippova A.I., Golubev V.A., Filippov S.V. Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas // Surv. Geophys. V. 42. № 5. P. 1143–1170. 2021. https://doi.org/10.1007/s10712-021-09651-7
- – Fuchs S.; Norden B., Artemieva I. et al. The Global Heat Flow Data-base: Release 2021. GFZ Data Services. 2021a. https://doi.org/10.5880/fidgeo.2021.014
- – Fuchs S., Beardsmore G., Chiozzi P. et al. A new database structure for the IHFC Global Heat Flow Database // International Journal of Terrestrial Heat Flow and Applied Geothermics. V. 4. № 1. P. 1–14. 2021b. https://doi.org/10.31214/ijthfa.v4i1.62
- – Gaina C., Werner S.C., Saltus R. et al. Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic // Geol. Soc. Lond. Mem. V. 35. P. 39–48. 2011. https://doi.org/10.1144/M35.3
- – Gard M., Hasterok D. A global Curie depth model utilizing the equivalent source magnetic dipole method // Phys. Earth Planet. Inter. V. 313. 106672. 2021. https://doi.org/10.1016/j.pepi.2021.106672
- – Gaudreau É., Audet P., Schneider D.A. Mapping Curie depth across western Canada from a wavelet analysis of magnetic anomaly data // J. Geophys. Res.: Solid Earth. V. 124. P. 4365–4385. 2019. https://doi.org/10.1029/2018JB016726
- – Goes S., Hasterok D., Schutt D.K., Klöcking M. Continental lithospheric temperatures: a review // Phys. Earth Planet. Inter. V. 306. 106509. 2020. https://doi.org/10.1016/j.pepi.2020.106509
- – Gramberg I.S., Verba V.V., Verba M.L., Kos’ko M.K. Sedimentary cover thickness map – sedimentary basins in the Arctic // Polarforschung. V. 69. P. 243–249. 1999.
- – Hojat A., Maule C.F., Singh H.K. Reconnaissance exploration of potential geothermal sites in Kerman province, using Curie depth calculations // Journal of the Earth and Space Physics. V. 41. № 4. P. 95–104. 2016. https://doi.org/10.22059/JESPHYS.2015.57226
- – Hussein M., Mickus K., Serpa L.F. Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California // Pure Appl. Geophys. V. 170. P. 617–632. 2013. https://doi.org/10.1007/s00024-012-0557-6
- – Ismail-Zadeh A., Honda S. Tsepelev I. Linking mantle upwelling with the lithosphere descent and the Japan Sea evolution: a hypothesis // Sci. Rep. V. 3. 1137. 2013. https://doi.org/10.1038/srep01137
- – Langel R.A., Hinze W.J. The magnetic field of the Earth’s lithosphere. Cambridge University, Cambridge, UK. 450 p. 1998.
- – Laske G., Masters G., Ma Z., Pasyanos M. Update on CRUST1.0 – A 1-degree global model of Earth’s crust / Abstracts European Geoscience Union General Assembly. Vienna, Austria, 7–12 April, 2013. № EGU2013-2658. 2013.
- – Lebedev S., Schaeffer A.J., Fullea J., Pease V. Seismic tomography of the Arctic region: inferences for the thermal structure and evolution of the lithosphere / Circum-Arctic lithosphere evolution / Geological Society, London, UK, Special Publications. V. 460. P. 419–440. 2017. https://doi.org/10.1144/SP460.10
- – Lesur V., Hamoudi M., Choi Y., Dyment J., Thébault E. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM) // Earth Planets Space. V. 68. № 1. P. 1–13. 2016. https://doi.org/10.1186/s40623-016-0404-6
- – Levshin A.L., Ritzwoller M.H., Barmin M.P., Villasenor A., Padgett C.A. New constraints on the arctic crust and uppermost mantle: surface wave group velocities, Pn, and Sn // Phys. Earth Planet. Inter. V. 123. P. 185–204. 2001. https://doi.org/10.1016/S0031-9201(00)00209-0
- – Li C.-F., Lu Y., Wang J. A global reference model of Curie-point depths based on EMAG2 // Sci. Rep. V. 7. 45129. 2017. https://doi.org/10.1038/srep45129
- – Lu Y., Li C.-F., Wang J., Wan X. Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications // Tectonophysics. V. 822. 229158. 2022. https://doi.org/10.1016/j.tecto.2021.229158
- – Maule C.F., Purucker M.E., Olsen N., Mosegaard K. Heat flux anomalies in Antarctica revealed by satellite magnetic data // Science. V. 309. P. 464–467. 2005. https://doi.org/10.1126/science.1106888
- – Maus, S., Barckhausen U., Berkenbosch H. et al. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements // Geochem. Geophys. Geosyst. V. 10. Q08005. 2009. https://doi.org/10.1029/2009GC002471
- – Meyer B., Chulliat A., Saltus R. Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3) // Geochem. Geophys. Geosyst. V. 18. P. 4522–4537. 2017. https://doi.org/10.1002/2017GC007280
- – Núñez Demarco P., Prezzi C., Sánchez Bettucci L. Review of Curie point depth determination through different spectral methods applied to magnetic data // Geophys. J. Int. V. 224. № 1. P. 17–39. 2021. https://doi.org/10.1093/gji/ggaa361
- – Okubo Y., Graf R.J., Hansen R.O., Ogawa K., Tsu H. Curie point depths of the island of Kyushu and surrounding areas, Japan // Geophysics. V. 50. P. 481–494. 1985.
- – Okubo Y., Matsunaga T. Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity // J. Geophys. Res. V. 99. № B11. P. 22 363–22 371. 1994.
- – Oliveira J.T.C., Barbosa J.A., de Castro D.L., de Barros Correia P., Magalhães J.R.C., Filho O.J.C., Buarque B.V. Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation // Annals. Geophys. V. 64. № 2. GT213. 2021. https://doi.org/10.4401/ag-8424
- – Olsen N., Ravat D., Finlay C.C., Kother L.K. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations // Geophys. J. Int. V. 211. P. 1461–1477. 2017. https://doi.org/10.1093/gji/ggx381
- – Pease V., Persson S. Neoproterozoic island arc magmatism of northern Taimyr / Proc. Fourth International Conference on Arctic Margins. Anchorage, P. 31–49. 2006.
- – Pirttijärvi M. 2D Fourier domain operations, FOURPOT program. https://wiki.oulu.fi/x/0oU7AQ/. 2015.
- – Prasad K.N.D., Bansal A.R., Prakash Om, Singh A.P. Magneto-thermometric modeling of Central India: Implications for the thermal lithosphere // J. Applied Geophysics. V. 196. 104508. 2022. https://doi.org/10.1016/j.jappgeo.2021.104508
- – Priestley K., McKenzie D., Ho T. A lithosphere-asthenosphere boundary – a global model derived from multimode surface-wave tomography and petrology / Lithospheric Discontinuities (eds. H. Yuan and B. Romanowicz) / AGU, Geophysical Monograph Series. Chapter 6. P. 111–123. 2019. https://doi.org/10.1002/9781119249740.ch6
- – Ravat D., Pignatelli A., Nicolosi I., Chiappini M. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data // Geophys. J. Int. V. 169. P. 421–434. 2007. https://doi.org/10.1111/j.1365-246X.2007.03305.x
- – Ritzwoller M.H., Levshin A.L. Eurasian surface wave tomography: group velocities // J. Geophys. Res. V. 103. No B3. P. 4839–4878. 1998. https://doi.org/10.1029/97JB02622
- – Salazar J.M., Vargas C.A., Leon H. Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies // Tectonophysics. V. 694. P. 400–413. 2017. https://doi.org/10.1016/j.tecto.2016.11.023
- – Salem A., Green C., Ravat D., Singh K.H., East P., Fairhead J.D., Morgen S., Biegert E. Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method // Tectonophysics. V. 624–625. P. 75–86. 2014. https://doi.org/10.1016/j.tecto.2014.04.027
- – Seredkina A. S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data // Phys. Earth Planet. Inter. V. 290. P. 76–86. 2019. https://doi.org/10.1016/j.pepi.2019.03.007
- – Sobh M., Gerhards C., Fadel I., Götze H.-J. Mapping the thermal structure of Southern Africa from Curie depth estimates based on wavelet analysis of magnetic data with uncertainties // Geochem. Geophys. Geosyst. V. 22. № 1. e2021GC010041. 2021. https://doi.org/10.1029/2021GC010041
- – Sun S., Du J., Zhi J., Chen C., Xu H. A constrained approach by Curie point depth estimation for the 3-D inversion of regional lithospheric magnetic anomaly data in spherical coordinates and its application to the Northern Xinjiang, China // J. Geophys. Res.: Solid Earth. V. 127. № 8. e2021JB023149. 2022. https://doi.org/10.1029/2021JB023149
- – Szwillus W., Baykiev E., Dilixiati Y., Ebbing J. Linearized Bayesian estimation of magnetization and depth to magnetic bottom from satellite data // Geophys. J. Int. V. 230. № 3. P. 1508–1533. 2022. https://doi.org/10.1093/gji/ggac133
- – Tanaka A. Global centroid distribution of magnetized layer from World Digital Magnetic Anomaly Map // Tectonics. V. 36. P. 3248–3253. 2017. https://doi.org/10.1002/2017TC004770
- – Tanaka A., Ishikawa Y. Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study // Phys. Earth Planet. Inter. V. 152. P. 257–266. 2005. https://doi.org/10.1016/j.pepi.2005.04.011
- – Tanaka A., Okubo Y., Matsubayashi O. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia // Tectonophysics. V. 306. P. 461–470. 1999.
- – Wen L., Kang G., Bai C., Gao G. Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas // Earth Planets Space. V. 71. P. 85. 2019. https://doi.org/10.1186/s40623-019-1063-1
Supplementary files
