Thermal Regime of the Lithosphere under the Taimyr Peninsula According to Geomagnetic Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents the results of a study of the thermal regime of the lithosphere under the Taimyr
Peninsula and adjacent territories (70°–80° N, 80°–115° E) based on geomagnetic data. Spectral analysis of
the lithospheric geomagnetic field given by the EMAG2v3 model was performed using the centroid method.
The calculations we performed showed that the minimum depths of the top boundary of lithospheric magnetic
sources (<2.5 km) are typical for the entire Taimyr fold belt and the considered part of the Siberian Platform,
and the maximum (>6 km) for the North Kara Basin. The position of the top boundary of the magnetically
active layer of the lithosphere above the bottom of the sedimentary layer under the Yenisei-Khatanga
and Khatanga-Lena basins can be associated with the widespread intrusion of basalt traps into the sedimentary
layer. The minimum depths of the bottom boundary of lithospheric magnetic sources (<36 km) are confined
to the Eurasian Basin and neighboring territories of the Laptev Sea shelf and the islands of the Severnaya
Zemlya archipelago, which indicates the greatest heating of the lithosphere under them within the
region under consideration. The depth of the bottom boundary reaches maximum values (≥48 km) under the
Yenisei-Khatanga and North Kara basins and the Siberian Platform, indicating the existence of the cold and,
accordingly, thick lithosphere here, which is confirmed by other independent geophysical data

About the authors

A. I. Filippova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN); Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: aleirk@mail.ru
Moscow, Troitsk, 142191 Russia; Moscow, 113556 Russia

S. V. Filippov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN); Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Author for correspondence.
Email: sfilip@izmiran.ru
Moscow, Troitsk, 142191 Russia; Moscow, 113556 Russia

References

  1. – Афанасенков А.П., Никишин А.М., Унгер А.В., Бордунов С.И., Луговая О.В., Чикишев А.А., Яковишина Е.В. Тектоника и этапы геологической истории Енисей-Хатангского бассейна и сопряженного Таймырского орогена // Геотектоника. № 2. С. 23–42. 2016. https://doi.org/10.7868/S0016853X16020028
  2. – Верниковский В.А. Геодинамическая эволюция Таймырской складчатой области. Новосибирск: Изд-во СО РАН, 203 с. 1996.
  3. – Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Недра. Кн. 2. 334 с. 1990.
  4. – Самыгин С.Г. Особенности строения и геодинамической эволюции Таймыра в неопротерозое // Литосфера. Т. 18. № 1. С. 5–19. 2018. https://doi.org/10.24930/1681-9004-2018-18-1-005-019
  5. – Середкина А.И. Поверхностно-волновая томография Арктики по данным дисперсии групповых скоростей волн Рэлея и Лява // Физика Земли. № 3. С. 58–70. 2019. https://doi.org/10.31857/S0002-33372019358-70
  6. – Середкина А.И., Филиппов С.В. Глубины залегания магнитных источников в Арктике и их связь с параметрами литосферы // Геология и геофизика. Т. 62. № 7. С. 902–916. 2021. https://doi.org/10.15372/GiG2020162
  7. – Сорохтин Н.О., Лобковский Л.И., Никифоров С.И. Козлов Н.Е. Геодинамическая эволюция нефтегазоносных бассейнов Карско-Баренцевоморского шельфа России // Арктика: экология и экономика. Т. 18. № 2. С. 14–25. 2015.
  8. – Филиппова А.И., Филиппов С.В. Глубины залегания литосферных магнитных источников и тепловой режим литосферы под Восточно-Сибирским морем // Физика Земли. № 4. С. 71–84. 2022а. https://doi.org/10.31857/S0002333722040032
  9. – Филиппова А.И., Филиппов С.В. Глубины залегания литосферных магнитных источников вдоль профиля “Ковдор–ГСЗ-76” (Балтийский щит – Баренцево море) // Геомагнетизм и Аэрономия. Т. 62. № 6. С. 781–792. 2022б. https://doi.org/10.31857/S0016794022060049
  10. – Яновский Б.М. Земной магнетизм. Л.: Ленинградский университет, 592 с. 1978.
  11. – Artemieva I.M. Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution // Tectonophysics. V. 416. P. 245–277. 2006. https://doi.org/10.1016/j.tecto.2005.11.022
  12. – Artemieva I.M. The continental lithosphere: reconciling thermal, seismic, and petrologic data // Lithos. V. 109. P. 23–46. 2009. https://doi.org/10.1016/j.lithos.2008.09.015
  13. – Bouligand C., Glen J.M.G., Blakely J. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization // J. Geophys. Res. V. 114. B11104. 2009. https://doi.org/10.1029/2009JB006494
  14. – Cammarano F., Guerri M. Global thermal models of the lithosphere // Geophys. J. Int. V. 210. P. 56–72. 2017. https://doi.org/10.1093/gji/ggx144
  15. – Carillo-de la Cruz J.L., Prol-Ledesma R.M., Gabriel G. Geostatistical mapping of the depth to the bottom of magnetic sources and heat flow estimations in Mexico // Geothermics. V. 97. 102225. 2021. https://doi.org/10.1016/j.geothermics.2021.102225
  16. – Cherepanova Y., Artemieva I.M., Thybo H., Chemia Z. Crustal structure of the Siberian Craton and the West Siberian Basin: an appraisal of existing data // Tectonophysics. V. 609. P. 154–183. 2013. https://doi.org/10.1016/j.tecto.2013.05.004
  17. – Correa R.T., Vidotti R.M., Guedes V.J.C.B., Scandolara J.E. Mapping the Thermal Structure of the Amazon Craton to Constrain the Tectonic Domains // J. Geophys. Res.: Solid Earth. V. 127. № 1. e2021JB023025. 2022. https://doi.org/10.1029/2021JB023025
  18. – Didas M.M., Armadillo E., Hersis G.P., Cumming W., Rizello D. Regional thermal anomalies derived from magnetic spectral analysis and 3D gravity inversion: implications for potential geothermal sites in Tanzania // Geothermics. V. 103. 102431. 2022. https://doi.org/10.1016/j.geothermics.2022.102431
  19. – Drachev S.S., Malyshev N.A., Nikishin A.M. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview / Petroleum geology: from mature basins to new frontiers – Proc. 7th Petroleum Geology Conference. Geological Society, London, P. 591–619. 2010. https://doi.org/10.1144/0070591
  20. – Filippova A.I., Golubev V.A., Filippov S.V. Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas // Surv. Geophys. V. 42. № 5. P. 1143–1170. 2021. https://doi.org/10.1007/s10712-021-09651-7
  21. – Fuchs S.; Norden B., Artemieva I. et al. The Global Heat Flow Data-base: Release 2021. GFZ Data Services. 2021a. https://doi.org/10.5880/fidgeo.2021.014
  22. – Fuchs S., Beardsmore G., Chiozzi P. et al. A new database structure for the IHFC Global Heat Flow Database // International Journal of Terrestrial Heat Flow and Applied Geothermics. V. 4. № 1. P. 1–14. 2021b. https://doi.org/10.31214/ijthfa.v4i1.62
  23. – Gaina C., Werner S.C., Saltus R. et al. Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic // Geol. Soc. Lond. Mem. V. 35. P. 39–48. 2011. https://doi.org/10.1144/M35.3
  24. – Gard M., Hasterok D. A global Curie depth model utilizing the equivalent source magnetic dipole method // Phys. Earth Planet. Inter. V. 313. 106672. 2021. https://doi.org/10.1016/j.pepi.2021.106672
  25. – Gaudreau É., Audet P., Schneider D.A. Mapping Curie depth across western Canada from a wavelet analysis of magnetic anomaly data // J. Geophys. Res.: Solid Earth. V. 124. P. 4365–4385. 2019. https://doi.org/10.1029/2018JB016726
  26. – Goes S., Hasterok D., Schutt D.K., Klöcking M. Continental lithospheric temperatures: a review // Phys. Earth Planet. Inter. V. 306. 106509. 2020. https://doi.org/10.1016/j.pepi.2020.106509
  27. – Gramberg I.S., Verba V.V., Verba M.L., Kos’ko M.K. Sedimentary cover thickness map – sedimentary basins in the Arctic // Polarforschung. V. 69. P. 243–249. 1999.
  28. – Hojat A., Maule C.F., Singh H.K. Reconnaissance exploration of potential geothermal sites in Kerman province, using Curie depth calculations // Journal of the Earth and Space Physics. V. 41. № 4. P. 95–104. 2016. https://doi.org/10.22059/JESPHYS.2015.57226
  29. – Hussein M., Mickus K., Serpa L.F. Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California // Pure Appl. Geophys. V. 170. P. 617–632. 2013. https://doi.org/10.1007/s00024-012-0557-6
  30. – Ismail-Zadeh A., Honda S. Tsepelev I. Linking mantle upwelling with the lithosphere descent and the Japan Sea evolution: a hypothesis // Sci. Rep. V. 3. 1137. 2013. https://doi.org/10.1038/srep01137
  31. – Langel R.A., Hinze W.J. The magnetic field of the Earth’s lithosphere. Cambridge University, Cambridge, UK. 450 p. 1998.
  32. – Laske G., Masters G., Ma Z., Pasyanos M. Update on CRUST1.0 – A 1-degree global model of Earth’s crust / Abstracts European Geoscience Union General Assembly. Vienna, Austria, 7–12 April, 2013. № EGU2013-2658. 2013.
  33. – Lebedev S., Schaeffer A.J., Fullea J., Pease V. Seismic tomography of the Arctic region: inferences for the thermal structure and evolution of the lithosphere / Circum-Arctic lithosphere evolution / Geological Society, London, UK, Special Publications. V. 460. P. 419–440. 2017. https://doi.org/10.1144/SP460.10
  34. – Lesur V., Hamoudi M., Choi Y., Dyment J., Thébault E. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM) // Earth Planets Space. V. 68. № 1. P. 1–13. 2016. https://doi.org/10.1186/s40623-016-0404-6
  35. – Levshin A.L., Ritzwoller M.H., Barmin M.P., Villasenor A., Padgett C.A. New constraints on the arctic crust and uppermost mantle: surface wave group velocities, Pn, and Sn // Phys. Earth Planet. Inter. V. 123. P. 185–204. 2001. https://doi.org/10.1016/S0031-9201(00)00209-0
  36. – Li C.-F., Lu Y., Wang J. A global reference model of Curie-point depths based on EMAG2 // Sci. Rep. V. 7. 45129. 2017. https://doi.org/10.1038/srep45129
  37. – Lu Y., Li C.-F., Wang J., Wan X. Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications // Tectonophysics. V. 822. 229158. 2022. https://doi.org/10.1016/j.tecto.2021.229158
  38. – Maule C.F., Purucker M.E., Olsen N., Mosegaard K. Heat flux anomalies in Antarctica revealed by satellite magnetic data // Science. V. 309. P. 464–467. 2005. https://doi.org/10.1126/science.1106888
  39. – Maus, S., Barckhausen U., Berkenbosch H. et al. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements // Geochem. Geophys. Geosyst. V. 10. Q08005. 2009. https://doi.org/10.1029/2009GC002471
  40. – Meyer B., Chulliat A., Saltus R. Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3) // Geochem. Geophys. Geosyst. V. 18. P. 4522–4537. 2017. https://doi.org/10.1002/2017GC007280
  41. – Núñez Demarco P., Prezzi C., Sánchez Bettucci L. Review of Curie point depth determination through different spectral methods applied to magnetic data // Geophys. J. Int. V. 224. № 1. P. 17–39. 2021. https://doi.org/10.1093/gji/ggaa361
  42. – Okubo Y., Graf R.J., Hansen R.O., Ogawa K., Tsu H. Curie point depths of the island of Kyushu and surrounding areas, Japan // Geophysics. V. 50. P. 481–494. 1985.
  43. – Okubo Y., Matsunaga T. Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity // J. Geophys. Res. V. 99. № B11. P. 22 363–22 371. 1994.
  44. – Oliveira J.T.C., Barbosa J.A., de Castro D.L., de Barros Correia P., Magalhães J.R.C., Filho O.J.C., Buarque B.V. Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation // Annals. Geophys. V. 64. № 2. GT213. 2021. https://doi.org/10.4401/ag-8424
  45. – Olsen N., Ravat D., Finlay C.C., Kother L.K. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations // Geophys. J. Int. V. 211. P. 1461–1477. 2017. https://doi.org/10.1093/gji/ggx381
  46. – Pease V., Persson S. Neoproterozoic island arc magmatism of northern Taimyr / Proc. Fourth International Conference on Arctic Margins. Anchorage, P. 31–49. 2006.
  47. – Pirttijärvi M. 2D Fourier domain operations, FOURPOT program. https://wiki.oulu.fi/x/0oU7AQ/. 2015.
  48. – Prasad K.N.D., Bansal A.R., Prakash Om, Singh A.P. Magneto-thermometric modeling of Central India: Implications for the thermal lithosphere // J. Applied Geophysics. V. 196. 104508. 2022. https://doi.org/10.1016/j.jappgeo.2021.104508
  49. – Priestley K., McKenzie D., Ho T. A lithosphere-asthenosphere boundary – a global model derived from multimode surface-wave tomography and petrology / Lithospheric Discontinuities (eds. H. Yuan and B. Romanowicz) / AGU, Geophysical Monograph Series. Chapter 6. P. 111–123. 2019. https://doi.org/10.1002/9781119249740.ch6
  50. – Ravat D., Pignatelli A., Nicolosi I., Chiappini M. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data // Geophys. J. Int. V. 169. P. 421–434. 2007. https://doi.org/10.1111/j.1365-246X.2007.03305.x
  51. – Ritzwoller M.H., Levshin A.L. Eurasian surface wave tomography: group velocities // J. Geophys. Res. V. 103. No B3. P. 4839–4878. 1998. https://doi.org/10.1029/97JB02622
  52. – Salazar J.M., Vargas C.A., Leon H. Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies // Tectonophysics. V. 694. P. 400–413. 2017. https://doi.org/10.1016/j.tecto.2016.11.023
  53. – Salem A., Green C., Ravat D., Singh K.H., East P., Fairhead J.D., Morgen S., Biegert E. Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method // Tectonophysics. V. 624–625. P. 75–86. 2014. https://doi.org/10.1016/j.tecto.2014.04.027
  54. – Seredkina A. S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data // Phys. Earth Planet. Inter. V. 290. P. 76–86. 2019. https://doi.org/10.1016/j.pepi.2019.03.007
  55. – Sobh M., Gerhards C., Fadel I., Götze H.-J. Mapping the thermal structure of Southern Africa from Curie depth estimates based on wavelet analysis of magnetic data with uncertainties // Geochem. Geophys. Geosyst. V. 22. № 1. e2021GC010041. 2021. https://doi.org/10.1029/2021GC010041
  56. – Sun S., Du J., Zhi J., Chen C., Xu H. A constrained approach by Curie point depth estimation for the 3-D inversion of regional lithospheric magnetic anomaly data in spherical coordinates and its application to the Northern Xinjiang, China // J. Geophys. Res.: Solid Earth. V. 127. № 8. e2021JB023149. 2022. https://doi.org/10.1029/2021JB023149
  57. – Szwillus W., Baykiev E., Dilixiati Y., Ebbing J. Linearized Bayesian estimation of magnetization and depth to magnetic bottom from satellite data // Geophys. J. Int. V. 230. № 3. P. 1508–1533. 2022. https://doi.org/10.1093/gji/ggac133
  58. – Tanaka A. Global centroid distribution of magnetized layer from World Digital Magnetic Anomaly Map // Tectonics. V. 36. P. 3248–3253. 2017. https://doi.org/10.1002/2017TC004770
  59. – Tanaka A., Ishikawa Y. Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study // Phys. Earth Planet. Inter. V. 152. P. 257–266. 2005. https://doi.org/10.1016/j.pepi.2005.04.011
  60. – Tanaka A., Okubo Y., Matsubayashi O. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia // Tectonophysics. V. 306. P. 461–470. 1999.
  61. – Wen L., Kang G., Bai C., Gao G. Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas // Earth Planets Space. V. 71. P. 85. 2019. https://doi.org/10.1186/s40623-019-1063-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (684KB)
6.

Download (616KB)

Copyright (c) 2023 А.И. Филиппова, С.В. Филиппов