Manifestation of Magnetic Flux Ropes in the Structure of Solar Prominences
- Authors: Filippov B.P.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences
- Issue: Vol 63, No 2 (2023)
- Pages: 174-180
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/651024
- DOI: https://doi.org/10.31857/S001679402260048X
- EDN: https://elibrary.ru/DLJCCU
- ID: 651024
Cite item
Abstract
The appearance of quiescent solar prominences most often resembles a wide curtain or a fence
made of a vertical palisade. It is hard to imagine that such a structure can be connected or even formed by a
magnetic flux rope, that is, a bundle of force lines twisted into a cylindrical helix, which sometimes clearly
manifests itself in active region filaments. However, with a relatively small activation of the prominences,
when the plasma composing them begins to move along the field lines, the structure of the magnetic flux rope
can be discerned. An example of a quiescent prominence is shown, in which rotational motion is observed
along helical trajectories outlining the flux rope. The rotation is clearly visible in the time-distance diagram,
which is composed of narrow strips of images of the prominence along the trajectory of motion
About the authors
B. P. Filippov
Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences
Author for correspondence.
Email: bfilip@izmiran.ru
Moscow, Troitsk, 108840 Russia
References
- – Куликова Г.Н., Молоденский М.М., Старкова Л.И., Филиппов Б.П. Токи в активной области HR16927 по данным Hα // Солнечные данные. № 10. Ленинград: Наука, 1986. С. 60–65.
- – Филиппов Б.П. Некоторые особенности объединения солнечных волокон // Астрон. журн. Т. 88. № 6. С. 587–597. 2011.
- – Филиппов Б.П. О морфологических признаках киральности солнечных волокон // Астрон. журн. Т. 94. № 10. С. 883–893. 2017.
- – Филиппов Б.П. Выбросы вещества из солнечной атмосферы // УФН. Т. 189. № 9. С. 905–924. 2019.
- – Amari T., Luciani J., Mikic Z., Linker J. A twisted flux rope model for coronal mass ejections and two-ribbon flares // Astrophys. J. V. 529. L49–L52. 2000.
- – Cargill P.J. Coronal magnetism: Difficulties and prospects // Space Sci. Rev. V. 144. P. 413–421. 2009.
- – Chae J. The magnetic helicity sign of filament chirality // Astrophys. J. Lett. V. 540. P. L115–L118. 2000.
- – Chen J. Effects of toroidal forces in current loops embedded in a background plasma // Astrophys. J. V. 338. P. 453–470. 1989.
- – Dere K.P., Brueckner G.E., Howard R.A., Michels D.J., Delaboudiniere J.P. LASCO and EIT observations of helical structure in coronal mass ejections // Astrophys. J. V. 516. P. 465–474. 1999.
- – Filippov B., Martsenyuk O., Srivastava A.K., Uddin W. Solar magnetic flux ropes // J. Astrophys. Astron. V. 36. № 1. P. 157–184. 2015.
- – Gary G.A. Plasma beta above a solar active region: rethinking the paradigm // Solar Phys. V. 203. P. 71–86. 2001.
- – Gigolashvili M.Sh. An investigation of macroscopic motions using the Ca+ lines in the prominence of 15 October 1969 // Solar Phys. V. 60. P. 293–298. 1978.
- – Gosling J.T. The Role of reconnection in the formation of flux ropes in the solar wind / Magnetic Helicity in Space and Laboratory Plasmas. Eds. M.R. Brown, R.C. Canfield, A.A. Pevtsov, Geophysical Monograph. V. 111. Washington: American Geophysical Union. P. 205–212. 1999.
- – Handy B.N., Acton L.W., Kankelborg C.C. The transition region and coronal explorer // Solar Phys. V. 187. P. 229–260. 1999.
- – Joshi N.C., Srivastava A.K., Filippov B., Kayshap P., Uddin W., Chandra R., Choudhary P.D., Dwivedi B.N. Confined partial filament eruption and its reformation within a stable magnetic flux rope // Astrophys. J. V. 787. 11. 2014.
- – Kliem B., Török T. Torus instability // Phys. Rev. Lett. V. 96. № 25. 255002. 2006.
- – Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. P. 17–40. 2012.
- – Leroy J.-L. Observation of prominence magnetic fields / Dynamics and structure of quiescent solar prominences; Proceedings of the Workshop, Palma de Mallorca, Spain, Nov. 1987. Ed. E.R. Priest, Dordrecht: Kluwer Academic Publishers. P. 77–113. 1989.
- – Li X., Morgan H., Leonard D., Jeska L. A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity // Astrophys. J. V. 752. L22. 2012.
- – Liggett M., Zirin H. Rotation in prominences // Solar Phys. V. 91. P. 259–267. 1084.
- – Lin J., Forbes T.G., Isenberg P.A., Demoulin P. The effect of curvature on flux-rope models of coronal mass ejections // Astrophys. J. V. 504. P. 1006–1019. 1998.
- – Lin H., Penn M.J., Tomczyk S. A new precise measurement of the coronal magnetic field strength // Astrophys. J. V. 541. P. L83–L86. 2000.
- – Lin Y., Engvold O., Rouppe van der Voort L., Wiik J.E., Berger T.E. Thin threads of solar filaments // Solar Phys. V. 226. P. 239–254. 2005.
- – Lin Y., Martin S.F., Engvold O. Filament substructures and their interrelation / Subsurface and Atmospheric Influences on Solar Activity. Eds. R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie. ASP Conf. Ser. V. 383. San Francisco: Astron. Soc. Pacific. P. 235–242. 2008.
- – Low B.C. Coronal mass ejections, magnetic flux ropes, and solar magnetism // J. Geophys. Res. V. 106. P. 25141–25164. 2001.
- – Lynch B.J., Antiochos S.K., DeVore C.R., Luhmann J.G., Zurbuchen T.H. Topological evolution of a fast magnetic breakout CME in three dimensions // Astrophys. J. V. P. 1192–1206. 2008.
- – Martin S.F., Echols C.R. An observational and conceptual model of the magnetic field of a filament / Solar Surface Magnetism. Ed. R.J. Rutten, C.J. Schrijver, Dordrecht: Kluwer Academic Publishers. P. 339–346. 1994.
- – Martin S.F., Lin Y., Engvold O. A method of resolving the 180-degree ambiguity by employing the chirality of solar features // Solar Phys. V. 250. P. 31–51. 2008.
- – Orozco Suárez D., Asensio Ramos A., Trujillo Bueno J. Evidence for rotational motions in the feet of a quiescent solar prominence // Astrophys. J. Lett. V. 761. L25. 2012.
- – Panasenco O., Martin S.F., Velli M. Apparent solar tornado-like prominences // Solar Phys. V. 289. P. 603–622. 2014.
- – Panesar N.K., Innes D.E., Tiwari S.K., Low B.C. A solar tornado triggered by flares? // Astron. Astrophys. V. 549. A105. 2013.
- – Pettit E. The forms and motions of the solar prominences // Publ. Yerkes Obs. V. 3. P. 205–240. 1925.
- – Pevtsov A.A., Balasubramaniam K.S., Rogers J.W. Chirality of chromospheric filaments // Astrophys. J. V. 595. P. 500–505. 2003.
- – Rompolt B. Spectral features to be expected from rotational and expansional motions in fine solar structures // Solar Phys. V. 41. P. 329–348. 1975.
- – Rompolt B. Small scale structure and dynanics of prominences // Hvar Obs. Bull. V. 14. P. 37–102. 1990.
- – Su Y., Wang T., Veronig A., Temmer M., Gan W. Solar magnetized “tornadoes:” relation to filaments // Astrophys. J. Lett. 756, L41. 2012.
- – Titov V.S., Demoulin P. Basic topology of twisted magnetic configurations in solar flares // Astron. Astrophys. V. 351. P. 707–720. 1999.
- – Vršnak B., Ruždjak V., Rompolt B. Stability of prominences exposing helical-like patterns // Solar Phys. V. 136. P. 151–167. 1991.
- – Vršnak B., Ruždjak V., Rompolt B., Rosa D., Zlobec P. Kinematics and evolution of twist in the eruptive prominence of August 18, 1980 // Solar Phys. V. 146. P. 147–162. 1993.
- – Wang H., Cao W., Liu C., Xu Y., Liu R., Zeng Z., Chae J., Ji H. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope // Nature Communications. V. 6. 7008. 2015.
- – Wedemeyer–Böhm S., Scullion E., Rouppe van der Voort L., Bosnjak A., Antolin P. Are giant tornadoes the legs of solar prominences? // Astrophys. J. V. 774. 123. 2013.
- – Wiegelmann T., Thalmann J.K., Solanki S.K. The magnetic field in the solar atmosphere // Astron. Astrophys. Rev. V. 22. 78. 2014.
- – Yang S., Zhang J., Liu Z., Xiang Y. New vacuum solar telescope observations of a flux rope tracked by a filament activation // Astrophys. J. V. 784. L36. 2014.
- – Yang Z., Bethge C., Tian H. et al. Global maps of the magnetic field in the solar corona // Science V. 369. № 6504. P. 694–697. 2020.
- – Zuccarello F.P., Meliani Z., Poedts S. Numerical modeling of the initiation of coronal mass ejections in active region NOAA 9415 // Astrophys. J. V. 758. 117. 2012.
Supplementary files
