The Coexistence of Orthogonal Current Structures and the Development of Different-Type Weibel Instabilities in Adjacent Regions of a Plasma Transition Layer with a Hot Electron Flow
- Authors: Garasev M.A.1, Kocharovsky V.V.1,2, Nechaev A.A.1, Stepanov A.N.1, Kocharovsky V.V.3
-
Affiliations:
- Institute of Applied Physics, Russian Academy of Sciences
- Lobachevsky University
- Department of Physics and Astronomy, Texas A&M University
- Issue: Vol 63, No 1 (2023)
- Pages: 12-27
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/651034
- DOI: https://doi.org/10.31857/S0016794022060050
- EDN: https://elibrary.ru/ADRIZJ
- ID: 651034
Cite item
Abstract
Abstract—By means of particle-in-cell numerical simulations, we find the possibility of the formation and
long-term coexistence of orthogonal current structures in adjacent layers of an inhomogeneous cold plasma
penetrated by a hot electron flow. The formationof these structures is shown to occur in a wide range of
parameters specifying collisionless expansion of high-energy electrons out of a dense plasma into a rarefied
plasma. These structures originate due to the development of Weibel instabilities of two different types that
are associated with qualitatively different anisotropic electron velocity distributions. Experiments with a laser
plasma produced in the course of target ablation by means of quasi-cylindrical focusing of a high-power femtosecond-
laser radiation beam are proposed in order to observe the predicted phenomenon
About the authors
M. A. Garasev
Institute of Applied Physics, Russian Academy of Sciences
Email: kochar@ipfran.ru
Nizhny Novgorod, 603155 Russia
Vl. V. Kocharovsky
Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky University
Email: kochar@ipfran.ru
Nizhny Novgorod, 603155 Russia
A. A. Nechaev
Institute of Applied Physics, Russian Academy of Sciences
Email: kochar@ipfran.ru
Nizhny Novgorod, 603155 Russia
A. N. Stepanov
Institute of Applied Physics, Russian Academy of Sciences
Email: kochar@ipfran.ru
Nizhny Novgorod, 603155 Russia
V. V. Kocharovsky
Department of Physics and Astronomy, Texas A&M University
Author for correspondence.
Email: kochar@ipfran.ru
College Station, TX 77843, United States
References
- – Арцимович Л.А., Сагдеев Р.З. Физика плазмы для физиков. М.: Атомиздат, 1979. 317 с.
- – Бородачёв Л.В., Гарасёв М.А., Коломиец Д.О., Кочаровский В.В., Мартьянов В.Ю., Нечаев А.А. Динамика самосогласованного магнитного поля и диффузионное рассеяние ионов в плазме с сильной анизотропией температуры // Изв. Вузов. Радиофизика. Т. 59. № 12. С. 1107–1117. 2016.
- – Гарасёв М.А., Нечаев А.А., Степанов А.Н., Кочаровский В.В., Кочаровский Вл.В. Вейбелевская неустойчивость и деформация внешнего магнитного поля в области распада сильного разрыва в плазме с горячими электронами // Геомагнетизм и аэрономия. Т. 62. № 3. С. 307–324. 2022.https://doi.org/10.31857/S0016794022030099
- – Кочаровский В.В., Кочаровский Вл.В., Мартьянов В.Ю., Тарасов С.В. Аналитическая теория самосогласованных токовых структур в бесстолкновительной плазме // Успехи физ. наук. Т. 186. С. 1267–1314. 2016.
- – Нечаев А.А., Гарасёв М.А., Кочаровский В.В., Кочаровский Вл.В. Вейбелевский механизм генерации магнитного поля при расширении сгустка бесстолкновительной плазмы с горячими электронами // Изв. вузов. Радиофизика. Т. 62. № 12. С. 932–952. 2019.
- – Нечаев А.А., Гарасёв М.А., Степанов А.Н., Кочаровский Вл.В. Формирование слоя уплотнения в бесстолкновительной электростатической ударной волне при расширении горячей плотной плазмы в холодную и разреженную // Физика плазмы. Т. 46. № 8. С. 694–713. 2020.
- – Степанов А.В., Зайцев В.В. Магнитосферы активных областей Солнца и звезд. М: Физматлит, 388 с. 2018.
- – Albertazzi B., Ciardi A., Nakatsutsumi M. et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field // Science. V. 346. P. 325–328. 2014. https://doi.org/10.1126/science.1259694
- – Albertazzi B., Chen S.N., Antici P. et al. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation // Phys. Plasmas. V. 22. № 12. 123108. 2015. https://doi.org/10.1063/1.4936095
- – Andreev N.E., Veisman M.E., Efremov V.P., Fortov V.E. The generation of a dense hot plasma by intense subpicosecond laser pulses // High Temperature. V. 41. P. 594–608. 2003. https://doi.org/10.1023/A:1026184309635
- – Arber T.D., Bennett K., Brady C.S. et al. Contemporary particle-in-cell approach to laser-plasma modelling // Plasma Phys. Control. Fusion. V. 57. 113001. 2015. https://doi.org/10.1088/0741-3335/57/11/113001
- – Borghesi M., MacKinnon A.J., Bell A.R., Gaillard R., Willi O. Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse // Phys. Rev. Lett. V. 81. 112. 1998. https://doi.org/10.1103/PhysRevLett.81.112
- – Chatterjee G., Singh P.K., Robinson A.P.L. et al. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions // Scientific Reports. V. 7. 8347. 2017. https://doi.org/10.1038/s41598-017-08619-1
- – Drake R.P. High-Energy-Density Physics – Fundamentals, Inertial Fusion and Experimental Astrophysics. Berlin: Springer, 2006. 518 p. https://doi.org/10.1007/3-540-29315-9
- – DeForest S.E., Howard R.A., Velli M., Viall N., Vourlidas A. The Highly Structured Outer Solar Corona // Astrophys. J. V. 862. 18. 2018. https://doi.org/10.3847/1538-4357/aac8e3
- – Dieckmann M.E. The filamentation instability driven by warm electron beams: statistics and electric field generation // Plasma Phys. Control. Fusion. V. 51. 124042. 2009. https://doi.org/10.1088/0741-3335/51/12/124042
- – Dudík J., Dzifčáková E., Meyer-Vernet N. et al. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review) // Solar Physics. V. 292. 100. 2017. https://doi.org/10.1007/s11207-017-1125-0
- – Forestier-Colleoni P., Batani D., Burgy F. et al. Space and time resolved measurement of surface magnetic field in high intensity short pulse laser matter interactions // Phys. Plasmas. V. 26. 072701. 2019. https://doi.org/10.1063/1.5086725
- – Fox W., Matteucci J., Moissard C., Schaeffer D.B., Bhattacharjee A., Germaschewski K., Hu S.X. Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas // Phys. Plasmas. V. 25. 102106. 2018. https://doi.org/10.1063/1.5050813
- – Garasev M., Derishev E. Impact of continuous particle injection on generation and decay of the magnetic field in collisionless shocks // Month. Not. Royal Astron. Soc. V. 461. P. 641–646. 2016.
- – Huntington C.M., Finza F., Ross J.S. et al. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows // Nat. Phys. V. 11. P. 173–176. 2015.
- – Langdon A.B. Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions // Phys. Rev. Lett. V. 44. P. 575–579. 1980. https://doi.org/10.1103/PhysRevLett.44.575
- – Lazar M., López R., Shaaban S.M., Poedts S., Yoon P.H., Fichtner H. Temperature Anisotropy Instabilities Stimulated by the Solar Wind Suprathermal Populations // Frontiers in Astronomy and Space Sciences. V. 8. 777559. 2022. https://doi.org/10.3389/fspas.2021.777559
- – Lyubarsky Y., Eichler D. Are Gamma-Ray Burst Shocks Mediated by the Weibel Instability? // Astrophys. J. V. 647. P. 1250–1254. 2006.
- – Marsch E. Kinetic Physics of the Solar Corona and Solar Wind // Living Reviews in Solar Physics. V. 3. 1. 2006. https://doi.org/10.12942/lrsp-2006-1
- – Moreno Q., Aruado A., Korneev Ph., Li C.K., Tikhonchuk V.T., Ribeyre X., d’Humières E., Weber S. Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons // Phys. Plasmas. V. 27. 122106. 2020. https://doi.org/10.1088/1361-6587/ab5bfb
- – Nakamura R., Varsani A., Genestreti K. J. et al. Multiscale Currents Observed by MMS in the Flow Braking Region // J. Geophys. Res.: Space Physics. V. 123. P. 1260–1278. 2018. https://doi.org/10.1002/2017JA024686
- – Ngirmang G.K., Morrison J.T., George K.M., Smith J.R., Frische K.D., Orban C., Chowdhury E.A., Mel Roquemore W. Evidence of radial Weibel instability in relativistic intensity laser-plasma interactions inside a sub-micron thick liquid target // Sci. Rep. V. 10. 9872. 2020. https://doi.org/10.1038/s41598-020-66615-4
- – Peterson J.R., Glenzer S, Fiuza F. Magnetic field amplification by a nonlinear electron streaming instability // Phys. Rev. Lett. V. 126. 215101. 2021. https://doi.org/10.1103/PhysRevLett.126.215101
- – Plechaty C., Presura R., Wright S., Neff S., Haboub A. Penetration of plasma across a magnetic field // Astrophys. Space Sci. V. 322. P. 195–199. 2009. https://doi.org/10.1007/s10509-009-9997-6
- – Quinn K., Romagnani L., Ramakrishna B. et al. Weibel-Induced Filamentation during an Ultrafast Laser-Driven Plasma Expansion // Phys. Rev. Lett. V. 108. № 13. 135001. 2012. https://doi.org/10.1103/PhysRevLett.108.135001
- – Shaikh M., Lad A.D., Jana K., Sarkar D., Dey I., Ravindra Kumar G. Megagauss magnetic fields in ultra-intense laser generated dense plasmas // Plasma Phys. Control. Fusion. V. 59. 014007. 2017. https://doi.org/10.1088/0741-3335/59/1/014007
- – Shukla N., Schoeffler K., Boella E., Vieira J., Fonseca R., Silva L.O. Interplay between the Weibel instability and the Biermann battery in realistic laser-solid interactions // Physical Review Research. V. 2. № 2. 023129. 2020. https://doi.org/10.1103/physrevresearch.2.023129
- – Soloviev A.A., Burdonov K.F., Kotov A.V. et al. Experimental study of the interaction of a laser plasma flow with a transverse magnetic field // Radiophysics and Quantum Electronics. V. 63. N 11. P. 876–886. 2021. https://doi.org/10.1007/s11141-021-10101-y
- – Stamper J.A. Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements // Laser Part. Beams. V. 9. P. 841–862. 1991. https://doi.org/10.1017/S0263034600006595
- – Stepanov A.N., Garasev M.A., Kocharovsky V.V., Korytin A.I., Mal’kov Yu.A., Murzanev A.A., Nechaev A.A. Generation of magnetic fields behind the front of an electrostatic shock wave in a laser plasma / Proc. Int. Conf. Laser Optics 2018 (ICLO 2018). St. Petersburg, Russia, 4–8 June 2018. IEEE. P. 242. 2018. https://doi.org/10.1109/LO.2018.8435840
- – Stepanov A.N., Garasev M.A., Kocharovsky Vl.V., Korytin A.I., Murzanev A.A., Nechaev A.A., Kartashov D.V., Samsonova Z.A. Investigation of the instabilities of an expanding plasma created during ablation of solid targets by intense femtosecond laser pulses / Proc. 2020 Int. Conf. Laser Optics (ICLO). St. Petersburg, Russia, 2–6 November, 2020. IEEE. P. 213. 2020. https://doi.org/10.1109/ICLO48556.2020.9285395
- – Thaury C., Mora P., Heron A., Adam J.C. Self-generation of megagauss magnetic fields during the expansion of a plasma // Phys. Rev. E. V. 82. № 1. 016408. 2010. https://doi.org/10.1103/physreve.82.016408
- – Vörös Z., Yordanova E., Varsani A. et al. MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath // J. Geophys. Res.: Space Physics. V. 122. P. 11 442–11 467. 2017. https://doi.org/10.1002/2017JA024535
- – Weibel E.S. Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution // Phys. Rev. Lett. V. 2. P. 83–84. 1959.
- – Yoon P.H. Kinetic instabilities in the solar wind driven by temperature anisotropies // Rev. Mod. Plasma Phys. V. 1. 4. 2017. https://doi.org/10.1007/s41614-017-0006-1
- – Zhou S., Bai Y., Tian Y., Sun H., Cao L., Liu J. Self-organized kilotesla magnetic-tube array in an expanding spherical plasma irradiated by kHz femtosecond laser pulses // Phys. Rev. Lett. V. 121. 255002. 2018. https://doi.org/10.1103/PhysRevLett.121.255002
Supplementary files
