Development of Forbush Decreases Associated with Coronal Ejections from Active Regions and non-Active Regions
- Authors: Melkumyan A.A.1, Belov A.V.1, Abunina M.A.1, Shlyk N.S.1, Abunin A.A.1, Oleneva V.A.1, Yanke V.G.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)
- Issue: Vol 63, No 1 (2023)
- Pages: 43-57
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/651037
- DOI: https://doi.org/10.31857/S0016794022060098
- EDN: https://elibrary.ru/ACTKXC
- ID: 651037
Cite item
Abstract
In this paper, we study the development of Forbush decreases associated with coronal mass ejections
from active regions accompanied by solar flares and filament eruptions from non-active regions using
the database of Forbush effects and interplanetary disturbances created at IZMIRAN. We compared the
development of two types of Forbush decreases during solar cycles 23–24, the maxima of these cycles, and
the minimum between them. Using statistical methods, we studied the distributions of time intervals from the
beginning of the Forbush decrease to registration: the minimum cosmic ray density, the maximum hourly
decrease in density, the maximum cosmic ray anisotropy, the maximum solar wind velocity, the maximum
strength of the interplanetary magnetic field, and the minimum of the Dst index. The difference in the development
of two types of Forbush decreases was compared when the interplanetary disturbance contains or
does not contain a magnetic cloud near the Earth. The results showed that flare-associated events develop
faster than filament-associated events, even at close values of the solar wind parameters. The difference in the
development of two types of Forbush decreases is more noticeable in the case of the presence of a magnetic
cloud near the Earth’s orbit. The largest difference between the time parameters in the two types of events is
observed for the time of registration of the maximum intensity of the interplanetary magnetic field. The main
phase of the two types of Forbush decreases is the same at the solar cycle 23 maximum and longer for filament-
associated events at the cycle 24 maximum and 23–24 minimum. Considering all time parameters, the
difference in the development of the two types of Forbush decreases is more noticeable at the maximum of
cycle 23 and at the minimum of cycle 23–24 than at the maximum of cycle 24
About the authors
A. A. Melkumyan
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Email: amelkum@izmiran.ru
Moscow, Troitsk, 108840 Russia
A. V. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Email: abelov@izmiran.ru
Moscow, Troitsk, 108840 Russia
M. A. Abunina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Email: abunina@izmiran.ru
Moscow, Troitsk, 108840 Russia
N. S. Shlyk
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Email: abunina@izmiran.ru
Moscow, Troitsk, 108840 Russia
A. A. Abunin
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Email: abunina@izmiran.ru
Moscow, Troitsk, 108840 Russia
V. A. Oleneva
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Email: abunina@izmiran.ru
Moscow, Troitsk, 108840 Russia
V. G. Yanke
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences(IZMIRAN)
Author for correspondence.
Email: abunina@izmiran.ru
Moscow, Troitsk, 108840 Russia
References
- − Абунин А.А., Абунина М.А., Белов А.В., Ерошенко Е.А., Оленева В.А., Янке В.Г. Форбуш-эффекты с внезапным и постепенным началом // Геомагнетизм и аэрономия. Т. 52. № 3. С. 313–320. 2012.
- − Абунина М.А., Абунин А.А., Белов А.В., Ерошенко Е.А., Асипенка А.C., Оленева В.А., Янке В.Г. Связь параметров Форбуш-эффектов с гелиодолготой солнечных источников // Геомагнетизм и аэрономия. Т. 53. № 1. С. 13–21. 2013.
- − Абунина М.А., Белов А.В., Шлык Н.С., Ерошенко Е.А., Абунин А.А., Оленева В.А., Прямушкина И.И., Янке В.Г. Форбуш-эффекты, созданные выбросами солнечного вещества с магнитными облаками // Геомагнетизм и аэрономия. Т. 61. № 5. С. 572–582. 2021.
- − Белов А.В., Ерошенко Е.А., Абунина М.А., Абунин А.А., Оленева В.А., Янке В.Г. Поведение плотности потока космических лучей в начале Форбуш-эффектов // Геомагнетизм и аэрономия. Т. 56. № 6. С. 683–689. 2016.
- − Белов А.В., Ерошенко Е.А., Янке Г.В, Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018.
- − Гущина Р.Т., Белов А.В., Ерошенко Е.А., Обридко В.Н., Паорис Е., Шельтинг Б.Д. Модуляция космических лучей на фазе роста солнечной активности 24-го цикла // Геомагнетизм и аэрономия. Т. 54. № 4. С. 470–476. 2014.
- − Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасшабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
- − Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Основные свойства Форбуш-эффектов, связанных с высокоскоростными потоками из корональных дыр // Геомагнетизм и аэрономия. Т. 58. № 2. С. 163–176. 2018а.
- − Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Долгопериодные изменения количества и величины Форбуш-эффектов // Геомагнетизм и аэрономия. Т. 58. № 5. С. 638–647. 2018б.
- − Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Рекуррентные и спорадические Форбуш-понижения в 23-ем и 24-ом солнечных циклах // Солнечно-земная физика. Т. 5. № 1. С. 39–47. 2019.
- − Мелкумян А.А., Белов А.В., Абунина М.А., Шлык Н.С., Абунин А.А., Оленева В.А., Янке В.Г. Особенности поведения временны́�х параметров Форбуш-понижений, связанных с разными типами солнечных и межпланетных источников // Геомагнетизм и аэрономия. Т. 62. № 2. С. 155–170. 2022a.
- − Мелкумян А.А., Белов А.В., Абунина М.А., Шлык Н.С., Абунин А.А., Оленева В.А., Янке В.Г. Сходство и различие Форбуш-понижений, связанных с потоками из корональных дыр, волоконными выбросами и выбросами из активных областей // Геомагнетизм и аэрономия. Т. 62. № 3. С. 283–301. 2022б.
- − Aslam O.P.M., Badruddin B. Study of cosmic-ray modulation during the recent unusual minimum and mini-maximum of solar cycle 24 // Solar Phys. V. 290. № 8. P. 2333–2353. 2015.
- − Badruddin B., Yadav R.S., Yadav N.R. Influence of Magnetic Clouds on Cosmic-Ray Intensity Variation // Solar Phys. V. 105. № 5. P. 413–428. 1986.
- − Badruddin B., Kumar A. Study of the cosmic-ray modulation during the passage of ICMEs and CIRs // Solar Phys. V. 291. № 2. P. 559–580. 2016.
- − Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena / Proc. IAU Symposium. № 257. P. 119–130. 2009.
- − Belov A., Abunin A., Abunina M. et al. Coronal mass ejections and non-recurrent Forbush decreases // Solar Phys. V. 289. N 10. P. 3949–3960. 2014.
- − Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H. Galactic cosmic ray density variations in magnetic clouds // Solar Phys. V. 290. № 5. P. 1429−1444. 2015.
- − Burlaga L., Sittler E., Mariani F., Schwenn R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations // J. Geophys. Res. V. 86. № A8. P. 6673–6684. 1981.
- − Cane H.V. CMEs and Forbush decreases // Space Sci. Rev. V. 93. № 1/2. P. 55–77. 2000.
- − Cane H.V., Richardson I.G., von Rosenvinge T.T., Wibberenz G. Cosmic ray decreases and shock structure: A multispacecraft study // J. Geophys. Res. V. 99. № A11. P. 21 429–21 441. 1994.
- − Chertok I.M., Grechnev V.V., Belov A.V., Abunin A.A. Magnetic flux of EUV arcade and dimming regions as a relevant parameter for early diagnostics of solar eruptions – sources
- of non-recurrent geomagnetic storms and Forbush decreases // Solar Phys. V. 282. № 1. P. 175–199. 2013.
- − Dorman L. I. Cosmic ray variation and space research. M.: AN USSR. 1027 p. 1963.
- − Dumbović M., Vrsnak B., Calogović J., Zupan R. Cosmic ray modulation by different types of solar wind disturbances // Astron. Astrophys. V. 538. № A28. 2012.
- − Forbush S.E. On the effects in the cosmic-ray intensity observed during magnetic storms // Phys. Rev. V. 51. P. 1108–1109. 1937.
- − Gopalswamy N., Akiyama S., Yashiro S., Mäkelä P. Coronal mass Eejections from sunspot and non-sunspot regions / Magnetic coupling between the interior and the atmosphere of the Sun. Eds. Hasan S. S. and Rutten R. J. Astrophysics and Space Science Proc. Berlin Heidelberg: Springer. P. 289–307. 2010a.
- − Gopalswamy N., Xie H., Mäkelä P., Akiyama S., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.-L. Interplanetary shocks lacking type II radio bursts // Astrophys. J. V. 710. № 2. P. 1111–1126. 2010b.
- − Gopalswamy N., Akiyama S., Yashiro S., Michalek G., Xie H., Makelea P. Effect of the weakened heliosphere in solar cycle 24 on the properties of coronal mass Ejections // J. Phys.: Conf. Ser. V. 1620. № 1. Article id 012005. 2020.
- − Huttunen K.E.J., Schwenn R.,Bothmer V., Koskinen H.E.J. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 // Ann. Geophysicae. V. 23. № 2. P. 625–641. 2005.
- − Iucci N., Parisi M., Storini M. et al. Forbush decreases: origin and development in the interplanetary space // Nuovo Cimento C. V. 2C. P. 1–52. 1979.
- − Kim R.S., Gopalswamy N., Cho K.S., Moon Y.J., Yashiro S. Propagation Ccharacteristics of CMEs associated with magnetic clouds and ejecta // Solar Phys. V. 284. № 1. P. 77–88. 2013.
- − King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data // J. Geophys. Res. V. 110. № A2. A02104. 2005.
- − Lingri D., Mavromichalaki H., Belov A., Eroshenko E., Yanke V., Abunin A., Abunina M. Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24 // Solar Phys. V. 291. № 3. P. 1025–1041. 2016a.
- − Lingri D., Mavromichalaki H., Belov A., Eroshenko E., Yanke V., Abunin A., Abunina M. Forbush decreases during the DeepMin and MiniMax of solar cycle 24 / Proc. 25th ECRS. Tourin, Italy, 2016. eConf C16-09-04.3. 2016b.
- − Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Revs. V. 12. № 5. P. 658–715. 1971.
- − Lockwood J.A., Webber W.R., Jokipii J.R. Characteristic recovery times of Forbush-type decreases in the cosmic radiation. I – Observations at Earth at different energies // J. Geophys. Res. V. 91. P. 2851–2857. 1986.
- − Lockwood J.A., Webber W.R., Debrunner H. J. Forbush decreases and interplanetary magnetic field disturbances: Association with magnetic clouds // Geophys. Res. V. 96. Is. A7. P. 11 587–11 604. 1991.
- − Lynch B.J., Zurbuhen T.H., Fisk L.A., Antiochos S.K. Internal structure of magnetic clouds: Plasma and composition // J. Geophys. Res.−Space. V. 108. № A6. ID 1239. 2003.
- − Lynch B.J., Gruesbeck J.R., Zurbuchen T.H., Antiochos S.K. Solar cycle–dependent helicity transport by magnetic clouds // J. Geophys. Res. V. 110. A08107. 2005.
- − Maričić D., Vrsnak B., Veronig A.M., Dumbović M., Sterc F., Rosa D., Karlica M., Hrzina D., Romstajn I. Sun-to-Earth observations and characteristics of isolated and Earth-impacting coronal mass ejections during 2008–2014 // Solar Phys. V. 295. № 7. Article id 91. 2020.
- − Maričić D., Sterc F., Dumbović M., Rosa D., Hrzina D., Romstajn I. Isolated Earth-impacting interplanetary coronal mass ejections and corresponding galactic cosmic ray flux variations // XVIIth Hvar Astrophysical Colloquium “The Sun and Heliosphere”. 20–24 September 2021.
- − Marubashi K., Lepping R.P. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux ropes models // Ann. Geophysicae. V. 25. № 11. P. 2453–2477. 2007.
- − Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. e2020SW002641. 2021.
- − Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Yanke V.G., Oleneva V.A. Comparison between statistical properties of Forbush decreases caused by solar wind disturbances from coronal mass ejections and coronal holes // Adv. Space Res. V. 63. № 2. P. 1100–1109. 2019.
- − Papaioannou A., Belov A., Abunina M., Eroshenko E., Abunin A., Anastasiadis A., Patsourakos S., Mavromichalaki H. Interplanetary coronal mass ejections as the driver of non-recurrent Forbush decreases // Astrophys. J. V. 890. № 2. Article id. 101. 2020.
- − Paouris E., Mavromichalaki H., Belov A., Gushchina R., Yanke V. Galactic cosmic ray modulation and the last solar minimum // Solar Phys. V. 280. № 1. P. 255–271. 2012.
- − Richardson I.G. Energetic Particles and Corotating Interaction Regions in the Solar Wind // Space Sci. Rev. V. 111. № 3. P. 267–376. 2004.
- – Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties // Solar Phys. V. 264. № 1. P. 189–237. 2010.
- − Richardson I.G., Cane H.V. Galactic cosmic ray intensity response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995–2009 // Solar Phys. V. 270. № 9. P. 609–627. 2011a.
- − Richardson I., Cane H. Geoeffectivenes (Dst and Kp) of interplanetary coronal mass ejections during 1995–2009 and implications for storm forecasting // Space Weather. V. 9. S07005. 2011b.
- − Singh Y.P., Badruddin B. Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays // J. Geophys. Res. V. 112. № 2. CiteID A02101. 2007.
- − Zhang G., Burlaga L.F. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. V. 93. № A4. P. 2511–2518. 1988.
Supplementary files
