Disturbance of the Electric Field in the D-Region of the Ionosphere with an Increase in Radon Emanation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

When radon emanates, the conductivity in the surface layer of air increases, which causes a variation in the electric field not only in the lower part of the atmosphere, but also in the ionosphere. There are known proposals to use such ionospheric disturbances as precursors of earthquakes. The ionospheric electric fields are calculated in the framework of a quasi-stationary model of an atmospheric conductor including the ionosphere. Earlier, we showed that even with extreme radon emanation, electric field disturbances in the E- and F- regions of the ionosphere are several orders of magnitude smaller than the supposed precursors of earthquakes and than the fields usually existing there which are created by other generators. In this paper, we focus on the D-region. In the vertical component of the electric field strength, the main contribution in the D-region is the contribution of the fair-weather field. It is shown that in the D-region the vertical component of the electric field over the area of intense radon emanation can double in comparison with the fair-weather field. A detailed spatial picture of disturbances of electric fields and currents in the atmosphere and in the ionosphere over the radon emanation region is constructed.

Full Text

Restricted Access

About the authors

V. V. Denisenko

Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: denisen@icm.krasn.ru
Russian Federation, Krasnoyarsk

N. V. Bakhmetyeva

Lobachevsky National Research University

Email: nv_bakhm@nirfi.unn.ru
Russian Federation, Nizhny Novgorod

References

  1. Бахметьева Н.В., Бубукина В.Н., Вяхирев В.Д., Калинина Е.Е., Комраков Г.П. Реакция нижней ионосферы на частные солнечные затмения 1 августа 2008 г. и 20 марта 2015 г. по наблюдениям рассеяния радиоволн естественными и искусственными неоднородностями ионосферной плазмы // Изв. вузов. Радиофизика. Т. 59. № 10. С. 873−886. 2016.
  2. Бахметьева Н.В., Вяхирев В.Д., Калинина Е.Е., Комраков Г.П. Нижняя ионосфера Земли во время частных солнечных затмений по наблюдениям вблизи Нижнего Новгорода // Геомагнетизм и аэрономия. Т. 57. № 1. С. 64−78. 2017. https://doi.org/10.7868/S0016794017010023
  3. Беликович В.В., Бенедиктов Е.А. Исследование сумеречной D-области ионосферы с помощью искусственных периодических неоднородностей // Изв. вузов. Радиофизика. Т. 45. № 6. С. 502−508. 2002.
  4. Беликович В.В., Бенедиктов Е.А., Толмачёва А.В., Бахметьева Н.В. Исследование ионосферы с помощью искусственных периодических неоднородностей. Н. Новгород: Изд-во ИПФ РАН, 156 с. 1999.
  5. Беликович В.В., Вяхирев В.Д., Калинина Е.Е. Исследование ионосферы методом частичных отражений // Геомагнетизм и аэрономия. Т. 44. № 2. С. 189−194. 2004.
  6. Денисенко В.В., Помозов Е.В. Расчет глобальных электрических полей в земной атмосфере // Вычислительные технологии. Т. 15. № 5. С. 34−50. 2010.
  7. Денисенко В.В., Райкрофт М.Дж., Харрисон Р.Дж. Математическая модель глобального ионосферного электрического поля, создаваемого грозами // Изв. РАН. Сер. физическая. Т. 87. № 1. С. 141−147. 2023. https://doi.org/10.31857/S0367676522700260
  8. Криволуцкий А.А., Вьюшкова Т.Ю., Черепанова Л.А., Куколева А.А., Репнев А.И., Банин М.В. Трехмерная глобальная фотохимическая модель CHARM. Учет вклада солнечной активности // Геомагнетизм и аэрономия. Т. 55. № 1. С. 64−93. 2015. https://doi.org/10.7868/s0016794015010071
  9. Мареев Е.А. Достижения и перспективы исследований глобальной электрической цепи // УФН. Т. 180. № 5. С. 527–534. 2010. https://doi.org/10.3367/UFNr.0180.201005h.0527
  10. Сурков В.В., Пилипенко В.А., Силина А.С. Могут ли радиоактивные эманации в сейсмоактивном регионе воздействовать на атмосферное электричество и ионосферу? // Физика Земли. № 3. С. 3−11. 2022. https://doi.org/10.31857/5000233372?930097
  11. Фаткуллин М.Н., Зеленова Т.И., Козлов В.К., Легенька А.Д., Соболева Т.Н. Эмпирические модели среднеширотной ионосферы. М.: Наука, 256 с. 1981.
  12. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions // Space Weather. V. 15. N 2. P. 418–429. 2017. https://doi.org/10.1002/2016SW001593
  13. Denisenko V.V., Biernat H.K., Mezentsev A.V., Shaidurov V.A., Zamay S.S. Modification of conductivity due to acceleration of the ionospheric medium // Ann. Geophys. V. 26. N 8. P. 2111−2130. 2008. https://doi.org/10.5194/angeo-26-2111-2008
  14. Denisenko V.V., Rozanov E.V., Belyuchenko K.V., Bessarab F.S., Golubenko K.S., Klimenko M.V. Simulation of the ionospheric electric field perturbation associated with an increase in radon emanation / Atmosphere, Ionosphere, Safety. Proceedings of VIII International Conference / Eds. O.P.Borchevkina, M.G.Golubkov, I.V.Karpov. Kaliningrad: Algomat, P. 117−121. 2023.
  15. Denisenko V.V., Rycroft M.J. WWLLN data used to model the global ionospheric electric field generated by thunderstorms // Ann. Geophys. − Italy. V. 65. N 5. ID PA536. 2022. https://doi.org/10.4401/ag-8821
  16. Denisenko V.V., Rycroft M.J. Seasonal dependence of the equatorial electrojets generated by thunderstorms // Adv. Space Res. V. 73. N 7. P. 3464−3471. 2023. https://doi.org/10.1016/j.asr.2023.08.017
  17. Denisenko V.V., Rycroft M.J., Harrison R.G. Mathematical simulation of the ionospheric electric field as a part of the global electric circuit // Surv. Geophys. V. 40. N 1. P. 1−35. 2019. https://doi.org/10.1007/s10712-018-9499-6
  18. Denisenko V.V., Zamay S.S. Electric field in the equatorial ionosphere // Planet. Space Sci. V. 40. N 7. P. 941−952. 1992. https://doi.org/10.1016/0032-0633(92)90134-A
  19. Golubenko K., Rozanov E., Mironova I., Karagodin A., Usoskin I. Natural sources of ionization and their impact on atmospheric electricity // Geophys. Res. Let. V. 47. N 12. ID e2020GL088619. 2020. https://doi.org/10.1029/2020GL088619
  20. Harrison R.G., Aplin K.L., Rycroft M.J. Atmospheric electricity coupling between earthquake regions and the ionosphere // J. Atmos. Sol.-Terr. Phy. V. 72. N 5−6. P. 376−381. 2010. https://doi.org/10.1016/j.jastp.2009.12.004
  21. Hedin A.E. Extension of the MSIS thermospheric model into the middle and lower atmosphere // J. Geophys. Res. – Space. V. 96. N 2. P. 1159−1165. 1991. https://doi.org/10.1029/90JA02125
  22. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., Pulinets S.A., Zhao B., Tsidilina M.N. Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008 // Adv. Space Res. V. 48. N 3. P. 488−499. 2011. https://doi.org/10.1016/j.asr.2011.03.040
  23. Krider E.P., Roble R.G., et al. The Earth’s electrical environment. Washington, DC: The National Academies Press. 279 p. 1986. https://doi.org/10.17226/898
  24. Molchanov O., Hayakawa M. Seismo-electromagnetics and related phenomena: history and latest results. Tokyo: TERRAPUB. 189 p. 2008.
  25. Nesterov S.A., Denisenko V.V. The influence of the magnetic field on the quasistationary electric field penetration from the ground to the ionosphere // J. Phys. Conf. Ser. V. 1715. ID 012020. 2021. https://doi.org/10.1088/1742-6596/1715/1/012020
  26. Pulinets S., Ouzounov D., Karelin A., Boyarchuk K. Earthquake precursors in the atmosphere and ionosphere. New Concepts. Dordrecht: Springer Nature. 294 p. 2022. https://doi.org/10.1007/978-94-024-2172-9
  27. Siingh D., Singh R.P., Kamra A.K., Gupta P.N., Singh R., Gopalakrishnan V., Singh A.K. Review of electromagnetic coupling between the Earth’s atmosphere and the space environment // J. Atmos. Sol.-Terr. Phy. V. 67. N 6. P. 637–658. 2005. https://doi.org/10.1016/j.jastp.2004.09.006
  28. Thebault E., Finlay C.C., Beggan C.D., et al. International Geomagnetic Reference Field: the 12th generation // Earth Planets Space. V. 67. N 1. ID 79. 2015. https://doi.org/10.1186/s40623-015-0228-9
  29. Xu T., Hu Y., Wu J., Wu Z., Li C., Xu Z., Suo Y. Anomalous enhancement of electric field derived from ionosonde data before the great Wenchuan earthquake // Adv. Space Res. V. 47. N 6. P. 1001−1005. 2011. https://doi.org/10.1016/j.asr.2010.11.006

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Altitude profiles of the conductivity tensor components at noon of the vernal equinox over Kamchatka at high solar activity (index F10.7 = 130).

Download (124KB)
3. Fig. 2. Potential distribution and current lines (dashed lines) in the vertical half-plane y = 0, x > 0 in the atmosphere above the radon emanation region. The potential values are indicated near the main equipotentials (bold lines).

Download (157KB)
4. Fig. 3. Vertical components of current density at two heights (dashed lines) and electric field strength above ground (solid curve).

Download (71KB)
5. Fig. 4. Radon emanation-induced perturbation of the potential δV. Bold lines are equipotentials δV with the same step in the logarithmic scale with the indicated potential values. Above 85 km, additional equipotentials with a step of 0.02 mV (thin lines) are plotted. The lines of the current δj, additional to the good-weather current, are shown as dashed lines at 5 km × 2 pA/m2 intervals at 10 km altitude.

Download (269KB)
6. Fig. 5. Current lines for δj. Bold lines - projections on the horizontal plane of current lines starting at an altitude of 50 km. Thin lines - cross sections of the current tube by horizontal planes located at altitudes from 70 to 150 km.

Download (127KB)
7. Fig. 6. Altitudinal course of the electric field strength components. Solid curve - perturbation due to radon emanation δEy ≈ δEx, dashed line - perturbation δE||, dots - longitudinal component of the good weather field E0||.

Download (75KB)

Copyright (c) 2024 Russian Academy of Sciences