Forecast of geomagnetic and solar activity based on macroscopic nonlocal correlations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A series of long-term experiments to study macroscopic nonlocal correlations between random dissipative heliogeophysical processes and probe processes in detectors revealed important properties of macroscopic entanglement predicted by absorber electrodynamics. These correlations have retarded and advanced components. The advanced correlation corresponds to time-reversed causality (due to the randomness of the processes, this does not lead to the well-known paradoxes). Solar as well as geomagnetic activity turned out to be the dominant global source processes causing the detector response. Advanced correlations make it possible to forecast the random components of these processes. The practical feasibility of such forecasts with a lead time of several months and with an accuracy sufficient for all practical purposes has been demonstrated.

全文:

受限制的访问

作者简介

S. Korotaev

Schmidt Institute of Physics of the Earth RAS

编辑信件的主要联系方式.
Email: korotaev@gemrc.ru

Geoelectromagnetic Research Centre

俄罗斯联邦, Moscow, Troitsk

V. Serdyuk

Schmidt Institute of Physics of the Earth RAS

Email: korotaev@gemrc.ru

Geoelectromagnetic Research Centre

俄罗斯联邦, Moscow, Troitsk

E. Kiktenko

Schmidt Institute of Physics of the Earth RAS

Email: korotaev@gemrc.ru

Geoelectromagnetic Research Centre

俄罗斯联邦, Moscow, Troitsk

I. Popova

Schmidt Institute of Physics of the Earth RAS

Email: korotaev@gemrc.ru

Geoelectromagnetic Research Centre

俄罗斯联邦, Moscow, Troitsk

N. Budnev

Irkutsk State University

Email: korotaev@gemrc.ru
俄罗斯联邦, Irkutsk

J. Gorohov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS

Email: korotaev@gemrc.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Коротаев С.М., Буднев Н.М., Сердюк В.О., Зурбанов В.Л., Миргазов Р.Р., Шнеер В.С., Мачинин В.А., Киктенко Е.О., Бузин В.Б., Панфилов А.И. Новые результаты мониторинга вертикальной компоненты электрического поля в озере Байкал на базе поверхность−дно // Геомагнетизм и аэрономия. Т. 55. № 3. С. 406−418. 2015. https://doi.org/10.7868/S001679401502011X
  2. Коротаев С.М., Буднев Н.М., Сердюк В.О., Киктенко Е.О., Орехова Д.А. Новые результаты Байкальского эксперимента по прогностическому эффекту макроскопических нелокальных корреляций // Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки. № 4. С. 56−72. 2019. https://doi.org/10.18698/1812-3368-2019-4-56-72
  3. Коротаев С.М., Морозов А.Н. Нелокальность диссипативных процессов – причинность и время. М.: Физматлит, 216 с. 2018.
  4. Коротаев С.М., Сердюк В.О., Горохов Ю.В. Прогноз геомагнитной и солнечной активности на основе нелокальных корреляций // ДАН. Т. 415. № 6. С. 814−817. 2007.
  5. Коротаев С.М., Сердюк В.О., Попова И.В., Горохов Ю.В., Киктенко Е.О., Орехова Д.А. Эксперимент по долгосрочному прогнозированию геомагнитной активности на основе нелокальных корреляций // Геомагнетизм и аэрономия. Т. 64. № 1. С. 141−148. 2024. https://doi.org/10.31857/S0016794024010144
  6. Amico L., Fazio R., Osterloch A., Vedral V. Entanglement in many-body systems // Rev. Mod. Phys. V. 80. № 2. P. 517−576. 2008. https://doi.org/10.1103/RevModPhys.80.517
  7. Calsamiglia J., Hartmann L., Dür W., Briegel H.-J. Spin gases: quantum entanglement driven by classical kinematics // Phys. Rev. Lett. V. 95. № 18. ID 180502. 2005. https://doi.org/10.1103/PhysRevLett.95.180502
  8. Cramer J.G. Generalized absorber theory and Einstein-Podolsky-Rosen paradox // Phys. Rev. D. V. 22. № 2. P. 362–376. 1980. https://doi.org/10.1103/PhysRevD.22.362
  9. Cramer J.G. The transactional interpretation of quantum mechanics // Rev. Mod. Phys. V. 58. № 3. P. 647−687. 1986. https://doi.org/10.1103/RevModPhys.58.647
  10. Elitzur A.S., Dolev S. Is there more to T? / The Nature of Time: Geometry, Physics and Perception. Eds. R. Buccery, M. Saniga, W.M. Stuckey. Dordrecht: Springer. P. 297−306. 2003. https://doi.org/10.1007/978-94-010-0155-7_31
  11. Home D., Majumdar A.S. Incompatibility between quantum mechanics and classical realism in the strong macroscopic limit // Phys. Rev. A. V. 52. № 6. P. 4959−4962. 1995. https://doi.org/10.1103/PhysRevA.52.4959
  12. Hoyle F., Narlikar J.V. Cosmology and action-at-a-distance electrodynamics // Rev. Mod. Phys. V. 67. № 1. P. 113–155. 1995. https://doi.org/10.1103/RevModPhys.67.113
  13. Korotaev S.M. Causality and Reversibility in Irreversible Time. Irvine, CA: Scientific Research Publishing, 130 p. 2011.
  14. Korotaev S., Budnev N., Serdyuk V., Kiktenko E., Gorohov J., Zurbanov V. Macroscopic entanglement and time reversal causality by data of the Baikal experiment // J. Phys. Conf. Ser. V. 1051. ID 012019. 2018a. https://doi.org/10.1088/1742-6596/1051/1/012019
  15. Korotaev S., Budnev N., Serdyuk V., Kiktenko E., Orekhova D., Gorohov J. Macroscopic nonlocal correlations in reverse time by data of the Baikal Experiment // J. Phys. Conf. Ser. V. 1557. ID 012026. 2020. https://doi.org/10.1088/1742-6596/1557/1/012026
  16. Korotaev S., Budnev N., Serdyuk V., Kiktenko E., Orekhova D., Gorohov J. Macroscopic nonlocal correlations by new data of the Baikal Experiment // J. Phys. Conf. Ser. V. 2197. ID 012019. 2022. https://doi.org/10.1088/1742-6596/2197/1/012019
  17. Korotaev S.M., Gorohov J.V., Serdyuk V.O., Novysh A.V. Response of macroscopic nonlocal correlation detector to a phase transition // J. Phys. Conf. Ser. V. 1348. ID 012041. 2019. https://doi.org/10.1088/1742-6596/1348/1/012041
  18. Korotaev S.M., Morozov A.N., Serdyuk V.O., Nalivayko V.I., Novysh A.V., Gaidash S.P., Gorohov J.V., Pulinets S.A., Kanonidi Kh.D. Manifestation of macroscopic nonlocality in the processes of solar and geomagnetic activity // Vestnik of BMSTU. Special Issue. P. 173−185. 2005.
  19. Korotaev S.M., Serdyuk V.O., Budnev N.M. Advanced response of the Baikal macroscopic nonlocal correlation detector to the heliogeophysical processes / Unified Field Mechanics II. Eds. R.L. Amoroso, L.H. Kauffman, P. Rowlands, G. Albertini. London: World Scientific. P. 375–380. 2018b. https://doi.org/10.1142/9789813232044_0035
  20. Kordas G., Wimberger S., Witthaut D. Dissipation induced macroscopic entanglement in an open optical lattice // Europhys. Lett. V. 100. № 3. ID 30007. 2012. https://doi.org/10.1209/0295-5075/100/30007
  21. Laforest M., Baugh J., Laflamme R. Time-reversal formalism applied to bipartite entanglement: theoretical and experimental exploration // Phys. Rev. A. V. 73. № 3. ID 032323. 2006. https://doi.org/10.1103/PhysRevA.73.032323
  22. Lean J.L., Brueckner G.E. Intermediate-term solar periodicities: 100–500 days // Astrophys. J. V. 337. P. 568−578. 1989. https://doi.org/10.1086/167124
  23. Lee S.-S.B., Park J., Sim H.-S. Macroscopic quantum entanglement of a Kondo Cloud at finite temperature // Phys. Rev. Lett. V. 114. № 5. ID 057203. 2015. https://doi.org/10.1103/PhysRevLett.114.057203
  24. Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y., Pirandola S., Rozema L.A., Darabi A., Soudagar Y., Shalm L.K., Steinberg A.M. Closed timelike curves via postselection: theory and experimental demonstration // Phys. Rev. Lett. V. 106. № 4. ID 040403. 2011. https://doi.org/10.1103/PhysRevLett.106.040403
  25. Ma X.-S., Zotter S., Kofler J., Ursin R., Jennewien T., Brukner Č., Zeilinger A. Experimental delayed-choice entanglement swapping // Nat. Phys. V. 8. P. 479−485. 2012. https://doi.org/10.1038/nphys2294
  26. Maldacena J., Susskind L. Cool horizons for entangled black holes // Progress of Physics. V. 61. № 9. P. 781−811. 2013. https://doi.org/10.1002/prop.201300020
  27. Megidish E., Halevy A., Shacham T., Dvir T., Dovrat L., Eisenberg H.S. Entanglement swapping between photons that have never coexisted // Phys. Rev. Lett. V. 110. № 21. ID 210403. 2013. https://doi.org/10.1103/PhysRevLett.110.210403
  28. Reid M.D., He Q.Y., Drummond P.D. Entanglement and nonlocality in multi-particle systems // Frontiers of Physics. V. 7. № 1. P. 72−85. 2012. https://doi.org/10.1007/s11467-011-0233-9

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the detector device. C - housing (wall thickness 20 mm), D - dewar, V - vessel with electrolyte, E - electrodes (internal device is not shown), T - temperature sensor. Materials: hatching - caprolon, double hatching - ebonite, dots - air, unshaded gap - vacuum.

下载 (184KB)
3. Fig. 2. Baikal deep-water installation. 1 - anchor; 2 - cable-tether; 3 - electronics unit; 4 - buoy; 5 - submerged buoy; I, II - upper electrode detector; III, IV - lower electrode detector.

下载 (170KB)
4. Fig. 3. Independence and causality functions of the detector signal U and solar radiation flux R. τ<0 correspond to the delay of U relative to R, τ>0 - advance.

下载 (113KB)
5. Fig. 4. Correlation function of the detector signal U and solar radio flux R, τ<0 correspond to the lag of U relative to R, τ>0 - advance.

下载 (59KB)
6. Fig. 5.Correlation function of the detector signal U and geomagnetic activity Dst, τ<0 corresponds to the lag of U relative to Dst, τ>0 - to the advance.

下载 (60KB)
7. Fig. 6. Forecast of solar activity with a fixed advance of 35 days (thin line) compared to the actual curve (bold line). The beginning of time counting is March 20, 1995. The mean-square error of the forecast is 0.88-10-22 W m-2 Hz-1.

下载 (107KB)
8. Fig. 7. Forecast of geomagnetic activity with a fixed advance of 35 days (thin line) compared to the actual curve (bold line). Beginning of the time countdown on September 19, 1995. The mean-square error of the forecast is 1.7 nTl.

下载 (95KB)
9. Fig. 8.Forecast of solar activity with a fixed advance of 123 days (thin line) compared to the actual curve (bold line). The beginning of the time reference is February 20, 2003. The mean-square error of the forecast is 2.9-10-22 W m-2 Hz-1.

下载 (99KB)
10. Fig. 9. Forecast of geomagnetic activity with an advance of 123 days (thin line) compared to the actual curve (bold line). The beginning of time counting (in days) is February 20, 2003. The mean-square error of the forecast is 2.0 nTl.

下载 (100KB)
11. Fig. 10.The signal of the Ut detector qualitatively predicts the variation of solar activity R (relative to the average level) with an advance of 180 days.The beginning of the time countdown is November 4, 2016.

下载 (169KB)
12. Fig. 11.The signal of the Ub detector qualitatively predicts the variation of geomagnetic activity Dst (relative to the average level) with an advance of 238 days.

下载 (135KB)
13. Fig. 12. Prediction of Dst by the current regression method with a fixed advance time of 329 days (thin line) compared to the actual curve (bold line). The RMS error of the prediction is 0.99 nTL.

下载 (99KB)
14. Fig. 13. Prediction of Dst using the current pulse transient response method with a fixed advance time of 329 days (thin line) versus the actual curve (bold line).The RMS error of the prediction is 0.40 nTL.

下载 (90KB)
15. Fig. 14: Prediction of Dst by the current neural network method with a fixed advance of 329 days (thin line) versus the actual curve (bold line).RMS error of the prediction is 0.29 nTl.

下载 (92KB)

版权所有 © Russian Academy of Sciences, 2025