Влияние суббурь на процессы в ионосфере и плазмосфере Земли

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Во время магнитосферных суббурь в области F ионосферы и вплоть до высот ~1000 км формируется поляризационный джет. По измерениям энергичных ионов кольцевого тока на спутнике AMPTE/CCE и по данным дрейфметров на спутниках DMSP было показано, что формирование поляризационного джета связано с вторжением энергичных ионов (10—100 кэВ) во внутреннюю магнитосферу во время суббурь. В области развития поляризационного джета изменяются характеристики плазмы в ионосфере: плотность плазмы понижается, иногда на порядок величины, и одновременно существенно повышается температура плазмы. Кроме того, одновременно с дрейфом плазмы на запад обычно наблюдается и дрейф плазмы вверх. Поток ионов вверх из области развития поляризационного джета ~109 см-2с-1 на порядок превосходит средний дневной поток ионов из ионосферы в плазмосферу. Измерения на спутнике МАГИОН-5 в плазмосфере на тех же L-оболочках, где регистрируется поляризационный джет в ионосфере, показывают возрастание концентрации холодных ионов. “Горбы” плотности, наблюдаемые вблизи плазмопаузы, по-видимому, образуются благодаря потокам плазмы из ионосферы, сопровождающих формирование поляризационного джета. Таким образом, последствия суббурь наблюдаются практически во всей магнитосфере.

Полный текст

Доступ закрыт

Об авторах

Г. А. Котова

Институт космических исследований РАН (ИКИ РАН)

Автор, ответственный за переписку.
Email: kotova@iki.rssi.ru
Россия, Москва

В. Л. Халипов

Институт космических исследований РАН (ИКИ РАН)

Email: kotova@iki.rssi.ru
Россия, Москва

А. Е. Степанов

Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН (ИКФИА СО РАН)

Email: kotova@iki.rssi.ru
Россия, Якутск

В. В. Безруких

Институт космических исследований РАН (ИКИ РАН)

Email: kotova@iki.rssi.ru
Россия, Москва

Список литературы

  1. Галеев А.А. Механизм магнитосферной суббури // Успехи физ. наук. 1979. Т. 127. № 3. С. 535—536. https://doi.org/10.3367/UFNr.0127.197903l.0535
  2. Гальперин Ю.И., Пономарев В.Н., Зосимова А.Г. Прямые измерения скорости дрейфа ионов в верхней ионосфере во время магнитной бури // Космич. исслед. 1973. Т. 11. № 2. С. 273—296.
  3. Деминов М.Г. Ионосфера Земли // Плазменная гелиогеофизика. В 2 т. Т. 2 / Под ред. Л.М. Зеленого, И.С. Веселовского. М.: Физматлит, 2008. С. 92–163.
  4. Котова Г.А. Плазмосфера Земли. Современное состояние исследований // Геомагнетизм и аэрономия. 2007. Т. 47. С. 1—16. https://doi.org/10.1134/S0016793207040019
  5. Кринберг И.А., Тащилин А.В. Ионосфера и плазмосфера. М.: Наука, 1984. 177 с.
  6. Степанов А.Е., Халипов В.Л., Бондарь Е.Д. Сопоставление характеристик поляризационного джета на разнесенных станциях Якутск — Подкаменная Тунгуска // Космич. исслед. 2008. Т. 46. № 2. С. 116—121. https://doi.org/10.1134/S0010952508020032
  7. Степанов А.Е., Голиков И.А., Попов В.И., Бондарь Е.Д., Халипов В.Л. Структурные особенности субавроральной ионосферы при возникновении поляризационного джета // Геомагнетизм и аэрономия. 2011. Т. 51. № 5. С. 643—649. https://doi.org/10.1134/S0016793211050136
  8. Степанов А.Е., Халипов В.Л., Котова Г.А., Заболоцкий М.С., Голиков И.А. Данные наблюдений крупномасштабной конвекции плазмы в магнитосфере в зависимости от уровня геомагнитной активности // Геомагнетизм и аэрономия. 2016. Т. 56. № 2. С. 194—199. https://doi.org/10.1134/S0016793216010114
  9. Степанов А.Е., Халипов В.Л., Голиков И.А., Бондарь Е.Д. Поляризационный джет: узкие и быстрые дрейфы субавроральной ионосферной плазмы. Якутск: Издательский дом СВФУ, 2017. 176 с.
  10. Степанов А.Е., Кобякова С.Е., Халипов В.Л., Котова Г.А. Результаты наблюдений дрейфов ионосферной плазмы в области поляризационного джета // Геомагнетизм и аэрономия. 2019. Т. 59. № 5. С. 578—581. https://doi.org/10.1134/s001679321905013x
  11. Халипов В.Л., Гальперин Ю.И., Степанов А.Е., Шестакова Л.В. Формирование поляризационного джета в ходе взрывной фазы суббури: результаты наземных измерений // Космич. исслед. 2001. Т. 39. Вып. 3. С. 244—253. https://doi.org/10.1023/A:1017573319665
  12. Халипов В.Л., Степанов А.Е., Котова Г.А., Бондарь Е.Д. Вариации положения поляризационного джета и границы инжекции энергичных ионов во время суббурь // Геомагнетизм и аэрономия. Т. 56. № 2. С. 187—193. 2016а. https://doi.org/10.1134/S0016793216020080
  13. Халипов В.Л., Степанов А.Е., Котова Г.А., Кобякова С.Е., Богданов В.В., Кайсин А.В., Панченко В.А. Вертикальные скорости дрейфа плазмы при наблюдении поляризационного джета по наземным доплеровским измерениям и данным дрейфометров на спутниках DMSP // Геомагнетизм и аэрономия. Т. 56. № 5. С. 568—578. 2016б. https://doi.org/10.1134/S0016793216050066
  14. Anderson P.C., Heelis R.A., Hanson W.B. The ionospheric signatures of rapid subauroral ion drifts // J. Geophys. Res. 1991. V. 96. № A4. P. 5785—5792. https://doi.org/10.1029/90JA02651
  15. Anderson P.C., Hanson W.B., Heelis R.A., Craven J.D., Baker D.N., Frank L.A. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution // J. Geophys. Res. 1993. V. 98. P. 6069—6078. https://doi.org/10.1029/92JA01975
  16. Foster J., Burke W. SAPS: A new categorization for subauroral electric fields // EOS Trans. AGU. 2002. V. 83. P. 293—294. https://doi.org/10.1029/2002EO000289
  17. Foster J.C., Vo H.B. Average characteristics and activity dependence of the subauroral polarization stream // J. Geophys. Res. 2002. V. 107. № A12. P. 1475. https://doi.org/10.1029/2002JA009409
  18. Galperin Yu.I., Ponomarev V.N., Zosimova A.G. Plasma convection in the polar ionosphere // Ann. Geophys. 1974. V. 30. P. 1—7.
  19. Gloeckler G., Ipavich F.M., Studemann W., et al. The charge-energy-mass-spectrometer for 0.3—300 kev/e ions on the Ampte CCE // IEEE Transactions on Geoscience and Remote Sensing. 1985. V. GE_23. № 3. P. 234—240. https://doi.org/10.1109/TGRS.1985.289519
  20. Khalipov V.L., Galperin Yu.I., Stepanov A.E., Bondar’ E.D. Formation of polarization jet during injection of ions into the inner magnetosphere // Adv. Space Res. 2003. V. 31. № 5. P. 1303—1308. https://doi.org/10.1016/S0273-1177(03)00016-4
  21. Khazanov G. Kinetic theory of the inner magnetospheric plasma // Astrophysics and Space Science Library 372. New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-6797-8
  22. Kitamura N., Seki K., Keika K., Nishimura Y., Hori T., Hirahara M., Lund E.J., Kistler L.M., Strangeway R.J. On the relationship between energy input to the ionosphere and the ion outflow flux under different solar zenith angles // Earth Planets and Space. 2021. V. 73. № 202. https://doi.org/10.1186/s40623-021-01532-y
  23. Kotova G., Bezrukikh V., Verigin M. The effect of the Earth’s optical shadow on thermal plasma measurements in the plasmasphere // J. Atm. Solar-Terr. Phys. 2014. V. 120. P. 9—14. https://doi.org/10.1016/j.jastp.2014.08.013
  24. Kotova G., Verigin M., Lemaire J., Pierrard V., Bezrukikh V., Smilauer J. Experimental study of the plasmasphere boundary layer using MAGION5 data // J. Geophys. Res. 2018. V. 123. P. 1251—1259. https://doi.org/10.1002/2017JA024590
  25. Kotova G., Khalipov V., Stepanov A., Bezrukikh V. Signatures of the polarization jet in the plasmasphere // J. Atm. Sol.-Terr. Phys. 2023. Available at SSRN (Social Science Research Network). http://dx.doi.org/10.2139/ssrn.4454933
  26. Landry R.G., Anderson P.C. An auroral boundary-oriented model of subauroral polarization streams (SAPS) // J. Geophys. Res. 2018. V. 123. P. 3154—3169. https://doi.org/10.1002/2017JA024921
  27. Lemaire J.F. and Gringauz K.I. with contribution from Carpenter D.L. and Bassolo V. The Earth’s Plasmasphere. Cambridge: Cambridge University Press, 1998.
  28. Moffett R.J., Ennis A.E., Bailey G.J., Heelis R.A., Brace L.H. Electron temperatures during rapid subauroral ion drift events // Ann. Geophysicae. 1998. V. 16. P. 450—459. https://doi.org/10.1007/s00585-998-0450-x
  29. Ness N.F. The Earth’s magnetic tail // J. Geophys. Res. 1965. V. 70. P. 2989—3005. https://doi.org/10.1029/JZ070i013p02989
  30. Rodger A.S., Moffet R.J., Quegan S. The role of the ion drift in the formation of ionization troughs in the mid- and high-latitude ionosphere — A Review // J. Atm. Terr. Phys. 1992. V. 54. P. 1—30. https://doi.org/10.1016/0021-9169(92)90082-V
  31. Smiddy M., Kelley M.C., Burke W.J., Rich R., Sagalyn R., Shuman B., Hays R., Lai S. Intense poleward directed electric fields near the ionospheric projection of plasmapause // Geophys. Res. Lett. 1977. V. 4. P. 543—546. https://doi.org/10.1029/GL004i011p00543
  32. Southwood D.J., Wolf R.A. An assessment of the role of precipitation in magnetospheric convection // J. Geophys. Res. 1978. V. 83. P. 5227—5232. https://doi.org/10.1029/JA083iA11p05227
  33. Spiro R.W., Heelis R.A., Hanson W.B. Rapid subauroral ions drifts observed by Atmospheric Explorer C // Geophys. Res. Lett. 1979. V. 6. № 8. P. 657—660. https://doi.org/10.1029/GL006i008p00657
  34. Stephens G.K., Sitnov M.I., Korth H., Tsyganenko N.A., Ohtani S., Gkioulidou M., Ukhorskiy A.Y. Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data // J. Geophys. Res. 2019. V. 124. P. 1085—1110. https://doi.org/10.1029/2018JA025843
  35. Wang H., Lühr H. Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods // Ann. Geophys. 2013. V. 31. P. 1521—1534. https://doi.org/10.5194/angeo-31-1521-2013
  36. Yeh H.C., Foster J.C. Storm time heavy ion outflow at mid-latitude // J. Geophys. Res. 1990. V. 95. P. 7881—7891. https://doi.org/10.1029/JA095iA06p07881

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Вверху: изменение индекса АЕ со временем. Сплошная линия — вспышка АЕ. Штриховая линия — время регистрации границы инжекции, точечная линия — время регистрации ПД на ст. Якутск. Внизу: спектрограммы “энергия — время” для различных ионов, зарегистрированных прибором CHEM на спутнике AMPTE/CCE 3—4 октября 1987 г. Штриховой линией отмечена граница инжекции ионов (IB).

Скачать (124KB)
3. Рис. 2. Зависимость экваториальной границы ПД (точки) и внутренней границы кольцевого тока (треугольники) от величины всплеска суббуревой активности АЕ. Соответствующие аппроксимирующие линии, сплошная и пунктирная, описаны в тексте.

Скачать (44KB)
4. Рис. 3. Зависимость времени появления ПД над станциями Якутск и Подкаменная Тунгуска от времени регистрации начала вспышки АЕ-индекса. Эти времена совпадают на пунктирной линии. Сплошные линии показывают линейные аппроксимации. Локальная полночь в Якутске и Подкаменной Тунгуске отмечена штрихпунктирной линией.

Скачать (146KB)
5. Рис. 4. Примеры наблюдения возрастаний плотности во внешней плазмосфере (а, в) или в пограничном слое плазмосферы (б) и сопряженных наблюдений ПД в верхней ионосфере. Сверху вниз показаны зависимости от инвариантной широты в градусах (): вариаций плотности протонов вдоль орбиты спутника МАГИОН-5, скоростей дрейфа ионов в вертикальном (Vв) и горизонтальном (Vг) направлениях и плотности электронов по данным спутников DMSP F15 и F12. Точечной линией отмечены максимальные скорости западного дрейфа. На нижних панелях показаны вариации АЕ-индекса за соответствующие дни. Штриховыми и точечными линиями отмечены времена измерений соответственно на спутниках МАГИОН-5 и DMSP. Сплошными линиями показаны пики АЕ, ответственные за формирование ПД.

Скачать (336KB)

© Российская академия наук, 2024