Actual aspects of digitalization in hygiene: theory and practice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Scopes and complexity of tasks related to providing hygienic safety of the population in the Russian Federation create great demand for up-to-date digitalization. It involves transformation of analogue data and work processes into electronic format, automation of business processes and operational data analysis.

The aim of this study was to describe basic scientific approaches and methodical techniques of digitalization in solving hygienic tasks of current importance. The study involved using neural networks, mathematical modelling, operational structural and dynamic analysis, etc. As part of domestic hygienic science, the method of neural networks has been developed for situational modelling and forecasting the population life expectancy under the influence of a complex of heterogeneous factors. We developed methodology for analysis and parameterization of epidemic waves considering regional specificity. Science-intensive research is being conducted to build a digital model of a person as a tool for in siliko simulation of the body’s responses to any external influences. The results of cellular, subcellular, and molecular technologies are being actively translated into digital formats for the purposes of sanitary-epidemiological analysis, clinical epidemiology, and evidence-based medicine. To solve practical hygienic problems, a new conceptual scheme of the cascade system “control and surveillance activities – habitat – public health” has been proposed. It makes possible to assess prevented health losses and economic damages. A conceptual scheme has been developed for incorporating forms of remote control into the general system of automation sanitary service activities. There are described methods and techniques for solving a set of other hygienic problems, including the formation of an evidence base for the negative impact of risk factors on public health, digital processing of research data, identification of pollutants using computer vision methods, and a number of others.

Conclusion. Digitalization that involves use of multi-dimensional big data together with up-to-date methods for their science intensive analysis ensures the most prompt and adequate solutions to relevant hygienic issues, allows more accurate predictions and provides wider opportunities for effective prevention activities performed by institutions responsible for hygienic safety and population health in the country.

Contribution:
Zaitseva N.V. – study concept and design, editing the text;
May I.V. – data collection and analysis, writing the text;
Alekseev V.B. – data collection, editing the text;
Kiryanov D.А. – data analysis.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The research was supported by financing provided from the Federal Budget.

Received: April 3, 2024 / Accepted: June 19, 2024 / Published: July 31, 2024

 

About the authors

Nina V. Zaitseva

Federal Scientific Center of Medical and Preventive Health Risk Management Technologies

Author for correspondence.
Email: znv@fcrisk.ru
ORCID iD: 0000-0003-2356-1145

MD, PhD, DSci., Professor, Academician of the Russian Academy of Sciences, Scientific Director of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

eE-mail: znv@fcrisk.ru

Russian Federation

Irina V. May

Federal Scientific Center of Medical and Preventive Health Risk Management Technologies

Email: may@fcrisk.ru
ORCID iD: 0000-0003-0976-7016

MD, PhD, DSci., Professor, Deputy Director for Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: may@fcrisk.ru

Russian Federation

Vadim B. Alekseev

Federal Scientific Center of Medical and Preventive Health Risk Management Technologies

Email: root@fcrisk.ru
ORCID iD: 0000-0001-5850-7232

MD, PhD, DSci., Director of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: root@fcrisk.ru

Russian Federation

Dmitry A. Kiryanov

Federal Scientific Center of Medical and Preventive Health Risk Management Technologies

Email: kda@fcrisk.ru
ORCID iD: 0000-0002-5406-4961

MD, PhD, head of the Department of mathematical modelling of systems and processes of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies , Perm, 614045, Russian Federation

e-mail: kda@fcrisk.ru

Russian Federation

References

  1. Levin A.I., Shoshina V.I. Trends of development of public administration in the conditions of digitization of economy. Gosudarstvo i obshchestvo: vchera, segodnya, zavtra. 2019; (2): 5–10. https://elibrary.ru/spwbid (in Russian)
  2. Eom S.J., Lee J. Digital government transformation in turbulent times: Responses, challenges, and future direction. Gov. Inf. Q. 2022; 39(2): 101690. https://doi.org/10.1016/j.giq.2022.101690
  3. Lindquist E., Huse I. Accountability and monitoring government in the digital era: Promise, realism and research for digital era governance. Can. Public Adm. 2017; 60(4): 627–56. https://doi.org/10.1111/capa.12243
  4. Zhu J.J., Yang M., Ren Z.J. Machine Learning in Environmental Research: Common Pitfalls and Best Practices. Environ. Sci. Technol. 2023; 57(46): 17671–89. https://doi.org/10.1021/acs.est.3c00026
  5. Carriger J.F., Barron M.G., Newman M.C. Bayesian networks improve causal environmental assessments for evidence-based policy. Environ. Sci. Technol. 2016; 50(24): 13195–205. https://doi.org/10.1021/acs.est.6b03220
  6. Borba J.V.B., Alves V.M., Braga R.C., Korn D.R., Overdahl K., Silva A.C., et al. STopTox: An in silico alternative to animal testing for acute systemic and topical toxicity. Environ. Health Perspect. 2022; 130(2): 27012. https://doi.org/10.1289/EHP9341
  7. Brown K.A., Brittman S., Maccaferri N., Jariwala D., Celano U. Machine learning in nanoscience: big data at small scales. Nano Lett. 2020; 20(1): 2–10. https://doi.org/10.1021/acs.nanolett.9b04090
  8. Fan Z., Yan Z., Wen S. Deep learning and artificial intelligence in sustainability: A review of SDGs, renewable energy, and environmental health. Sustainability. 2023; 15(18): 13493. https://doi.org/10.3390/su151813493
  9. Shahid N., Rappon T., Berta W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS One. 2019; 14(2): e0212356. https://doi.org/10.1371/journal.pone.0212356
  10. Schlessinger L., Eddy D.M. Archimedes: a new model for simulating health care systems – the mathematical formulation. J. Biomed. Inform. 2002; 35(1): 37–50. https://doi.org/10.1016/s1532-0464(02)00006-0.
  11. Lee S.H., Sung J.H. Organ-on-a-chip technology for reproducing multiorgan physiology. Adv. Healthc. Mater. 2018; 7(2). https://doi.org/10.1002/adhm.201700419
  12. Zhao X., Liu Y., Ding J., Ren X., Bai F., Zhang M. Hemodynamic effects of the anastomoses in the modified Blalock-Taussig shunt: a numerical study using a 0D/3D coupling method. Mech. Med. Biol. 2015; 15: 1550017. https://doi.org/10.1142/S0219519415500177
  13. Demirel H.O., Ahmed S., Duffy V.G. Digital human modeling: a review and reappraisal of origins, present, and expected future methods for representing humans computationally. Int. J. Hum. Comput. Int. 2022; 38(10): 897–937. https://doi.org/10.1080/10447318.2021.1976507
  14. Patyashina M.A., Yuzlibaeva L.R. Using modern information technologies for sanitary and epidemiologic well-being maintenance during mass events with international participation. Kazanskii meditsinskii zhurnal. 2015; 96(2): 241–8. https://doi.org/10.17750/KMJ2015-241 https://elibrary.ru/tmhtgv (in Russian)
  15. Zaitseva N.V. Hygiene in resolving actual problems of developing the health potential and life expectancy of the population in the Russian Federation. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(10): 1138–44. https://doi.org/10.47470/0016-9900-2022-101-10-1138-1144 https://elibrary.ru/ctxokc (in Russian)
  16. Zaitseva N.V., Kleyn S.V., Glukhikh М.V., Kiryanov D.А., Kamaltdinov М.R. Predicting growth potential in life expectancy at birth of the population in the Russian Federation based on scenario changes in socio-hygienic determinants using an artificial neural network. Health Risk Analysis. 2022; (2): 4–16. https://doi.org/10.21668/health.risk/2022.2.01.eng https://elibrary.ru/wwenix
  17. Kokoulin А.N., May I.V., Zagorodnov S.Yu., Yuzhakov А.А. On new methods for measuring and identifying dust microparticles in ambient air. Health Risk Analysis. 2023; (1): 36–45. https://doi.org/10.21668/health.risk/2023.1.04.eng https://elibrary.ru/ufkqeo
  18. Trusov P.V., Zaitseva N.V., Kiryanov D.A., Kamaltdinov M.R., Tsinker M.Yu., Chigvintsev V.M., et al. А mathematical model for evolution of human functional disorders influenced by environment factors. Matematicheskaya biologiya i bioinformatika. 2012; 7(2): 589–610. https://elibrary.ru/pnbukz (in Russian)
  19. Kiryanov D.A., Kamaltdinov M.R., Tsinker M.Yu., Babina S.V., Kleyn S.V., Andrishunas A.M. Parameterization of relationships between risk factors and public health under chronic exposure to complex ambient air pollution. Analiz riska zdorov’yu. 2022; (4): 33–44. https://doi.org/10.21668/health.risk/2022.4.03.eng https://elibrary.ru/dwetml
  20. Zemlyanova M.A., Zaitseva N.V., Kiryanov D.A., Ustinova O.Yu. Methodological approaches to evaluation and prediction of individual risk to health under the exposure to a complex of different factors for tasks of personalized prophylaxis. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2018; 97(1): 34–43. https://doi.org/10.18821/0016-9900-2018-97-1-34-43 https://elibrary.ru/ywrnft (in Russian)
  21. Zaitseva N.V., Zemlyanova M.A., May I.V., Alekseev V.B., Trusov P.V., Khrushcheva E.V., Savochkina A.A. Efficiency of health risk mitigation: complex assessment based on fuzzy sets theory and applied in planning activities aimed at ambient air protection. Health Risk Analysis. 2020; (1): 25–37. https://doi.org/10.21668/health.risk/2020.1.03.eng https://elibrary.ru/vamexc
  22. Faminskaya M.V., Balter B.M., Balter D.B., Stal’naya M.V. OLAP-system for modeling the risk to population health from air pollution. Programmnye produkty i sistemy. 2014; (4): 234–41. https://elibrary.ru/tpowrh (in Russian)
  23. Popova A.Yu., Kuz’kin B.P., Demina Yu.V., Dubyanskii V.M., Kulichenko A.N., Maletskaya O.V., et al. Using modern information technology in the practice of the sanitary-epidemiological surveillance during the XXII Olympic winter games and XI paralympic winter games in Sochi. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2015; 92(2): 113–8. https://elibrary.ru/vobeil (in Russian)
  24. Tsinker M.Yu., Kuchukov A.I. Study of air flow in the lower respiratory tract of an individual shape obtained on the basis of computed tomography images. Matematicheskoe modelirovanie v estestvennykh naukakh. 2022; 1: 311–4. https://elibrary.ru/zytcro (in Russian)
  25. Kamaltdinov M.R., Kuchumov A.G. Application of a mathematical model of systemic circulation for determination of blood flow parameters after modified Blalock-Taussig shunt operation in newborns. Rossiiskii zhurnal biomekhaniki. 2021; 25(3): 269–84. https://doi.org/10.15593/RJBiomech/2021.3.07 https://elibrary.ru/nsvtzj
  26. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Nekrasova A.V. Mathematical model of airflow and solid particles transport in the human nasal cavity. Mathematical Biology and Bioinformatics. 2023; 18(S): 1–16. https://doi.org/10.17537/2023.18.t1 https://elibrary.ru/gzpswh
  27. Kamaltdinov M.R., Zaitseva N.V., Shur P.Z. Numerical modeling of acidity distribution in antroduodenum aimed at identifying anomalous zones at consuming drinks with different pH level. Health Risk Analysis. 2017; (1): 38–46. https://doi.org/10.21668/health.risk/2017.1.05.eng
  28. Zemlyanova M.A., Zaitseva N.V., Koldibekova Yu.V., Peskova E.V., Bulatova N.I., Stepankov M.S. Markers of combined aerogenic exposure to metal oxides and transformed plasma proteomic profiles in children. Health Risk Analysis. 2023; (10): 137–46. https://doi.org/10.21668/health.risk/2023.1.13.eng
  29. Popova A.Yu., Kuzmin S.V., Zaitseva N.V., May I.V. Priorities in scientific support provided for hygienic activities accomplished by a sanitary and epidemiologic service: how to face known threats and new challenges. Analiz riska zdorov’yu. 2021; (1): 4–14. https://doi.org/10.21668/health.risk/2021.1.01.eng https://elibrary.ru/xmvvjb
  30. Gurvich V.B., Kuz’min S.V., Malykh O.L., Yarushin S.V. Public health monitoring – integrated assessment and management of risk for health at the regional level. Sanitarnyi vrach. 2014; (1): 29–31. https://elibrary.ru/scowet (in Russian)
  31. Yakubailik O.E., Kadochnikov A.A., Tokarev A.V. Web geographic information system and the hardware and software ensuring rapid assessment of air pollution. Avtometriya. 2018; 54(3): 39–46. https://doi.org/10.3103/S8756699018030056 https://elibrary.ru/ycbxad (in Russian)
  32. Polikarpov A.V., Golubev N.A., Levakhina Yu.S., Makhov V.A. Geoinformation system as an element of territorial planning in health care. Vestnik Roszdravnadzora. 2022; (6): 68–74. https://elibrary.ru/drbbve (in Russian)
  33. Avaliani S.L., Novikov S.M., Shashina T.A., Skvortsova N.S., Kislitsin V.A., Mishina A.L. Problems and ways of solutions to harmonize standards for air pollution. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2012; 91(5): 75–8. https://elibrary.ru/puhixv (in Russian)
  34. Shur P.Z., Zaitseva N.V., Khasanova A.A., Chetverkina K.V., Kostarev V.G. Improvement of quantitative indicators for assessing non-carcinogenic health risks under chronic inhalation exposure to a chemical. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(11): 1412–8. https://doi.org/10.47470/0016-9900-2022-101-11-1412-1418 https://elibrary.ru/bdelqn (in Russian)
  35. Kiryanov D.A., Kamaltdinov M.R., Tsinker M.Yu., Chigvintsev V.M., Babina S.V., Kuchukov A.I. Cascade Model for Assessing and Predicting Health Losses Prevented through Control and Supervisory Activities of Rospotrebnadzor. Zdorov’e naseleniya i sreda obitaniya – ZNiSO. 2023; 31(12): 27–36. https://doi.org/10.35627/2219-5238/2023-31-11-27-36 (in Russian)
  36. Popova A.Yu., Zaitseva N.V., May I.V., Kiryanov D.A., Kolesnik P.A. Distant control of sanitary legislation compliance: goals, objectives, prospects for implementation. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(10): 1024–34. https://doi.org/10.47470/0016-9900-2021-100-10-1024-1034 https://elibrary.ru/eexddz (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Zaitseva N.V., May I.V., Alekseev V.B., Kiryanov D.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.