The role of food products in increasing the body’s resistance to the action of nanoparticles (literature review)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Long-term scientific research of the Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers has shown the feasibility of increasing the body resistance (especially that in risk groups) to potentially dangerous levels of adverse exposure to be being considered as a counter path to biomedical prevention. As a result, “bioprophylactic complexes” containing vitamin and mineral components have been developed. An important pattern identified in the conducted studies is that the complex use of bioprophylactic agents with not completely identical directions and different mechanisms of action gives a more pronounced preventive effect than individual bioprotectors. In a large number of experiments, the team of the above mentioned Center successfully tested ways to increase the body resistance to such pollutants as mineral dusts (silicon dioxide, asbestos, monazite); salts and oxides of lead, arsenic, chromium, manganese, fluorine, vanadium, and nickel; organic substances (phenol, formaldehyde, benzo(a)pyrene); various combinations of metals and their compounds, including nanoparticles, e.g., Pb and Cd; Pb and F; Pb, As, Cu, Cd; Pb, Cr, As, Cd; Pb, Cr, Se, As, Ni; Mn, Al, Ti, Si, etc., found in the environment of regional cities and/or the workplace air of certain industries. We claim that our experience in this area is unique and that some results have been obtained for the first time, especially with regard to nanoparticles. The role of nutritional components in increasing the body resistance to adverse effects of nanoparticles is still poorly studied. Here we present a review of publications by other researchers on the use of natural components to increase the body resistance to detrimental effects of nanoparticles on health .

Our purpose was to review available sources on the ability of natural components to increase the resistance of the human body to effects of nanoparticles to further deepen theoretical and methodological foundations of the system of biological prophylaxis.

We reviewed Russian and English-language original research reports published in 2014–2023 and found in PubMed, Google Scholar, e-Library, CyberLeninka, and Scopus databases using the following keywords: additives, nanoparticles, toxicity, and resistance enhancement. The inclusion criterion was information on the ability of natural food additives to mitigate unfavourable effects of poisoning with nanoparticles sized 1 to 100 nm. Of more than 200 sources originally found, 60 full-text papers were selected, of which over 60 % were written by Egyptian research teams.

We revealed the possibility of using certain natural foods and components, i.e. spices and plant parts (turmeric, arugula seeds, algae), carotenoids (β-carotene, lycopene, crocin), plant extracts (ginkgo biloba extract, chicory, Chinese cinnamon bark, green tea, pomegranate, etc.), essential oils (thyme, cinnamon, basil, etc.), juices (beets, pomegranate), and flavonoids, to increase the resistance of a living organism to toxicity of nanoparticles and to reduce severity of their neuro-, cardio-, repro-, nephro- and hepatotoxic effects.

Conclusion. This literature review describes the most effective natural foods and their components enhancing the resistance of a living organism to adverse effects of nanoparticles.

Contributions:
Ryabova Yu.V. – study conception and design, draft manuscript preparation, editing;
Shabardina L.V. – data collection and processing, draft manuscript preparation;
Minigalieva I.A. – scientific editing;
Sutunkova M.P. – scientific advice.
All authors – approval of the final version of the manuscript and responsibility for the integrity of all its parts.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: May 22, 2023 / Revised: May 25, 2024 / Accepted: June 19, 2024 / Published: July 31, 2024

Sobre autores

Yuliya Ryabova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Autor responsável pela correspondência
Email: ryabovaiuvl@gmail.com
ORCID ID: 0000-0003-2677-0479

MD, PhD, head of the Laboratory of Scientific Foundations of Bioprophylaxis, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation

e-mail: ryabovaiuvl@gmail.com

Rússia

Lada Shabardina

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: lada.shabardina@mail.ru
ORCID ID: 0000-0002-8284-0008

Junior researcher, Department of Toxicology and Bioprophylaxis, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federatio

e-mail: lada.shabardina@mail.ru

Rússia

Ilzira Minigalieva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: ilzira-minigalieva@yandex.ru
ORCID ID: 0000-0002-0097-7845

MD, PhD, DSci., head of the Department of Toxicology and Bioprophylaxis, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation

e-mail: ilzira-minigalieva@yandex.ru

Rússia

Marina Sutunkova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; Ural State Medical University

Email: sutunkova@ymrc.ru
ORCID ID: 0000-0002-1743-7642

MD, PhD, DSci, Director, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation; assoc. professor, acting head of the Department of Occupational Health and Medicine, Ural State Medical University, Yekaterinburg, 620028, Russian Federation

e-mail: sutunkova@ymrc.ru

Rússia

Bibliografia

  1. Ermolin M.S., Fedotov P.S., Malik N.A., Karandashev V.K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere. 2018; 200: 16–22. https://doi.org/10.1016/j.chemosphere.2018.02.089
  2. ISO/TR 27628:2007. Workplace atmospheres – Ultrafine, nanoparticle and nano-structured aerosols – Inhalation exposure characterization and assessment; 2007.
  3. De Jong W.H., Borm P.J. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine. 2008; 3(2): 133–49. https://doi.org/10.2147/ijn.s596
  4. Zhong G., Long H., Zhou T., Liu Y., Zhao J., Han J., et al. Blood-brain barrier Permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials. 2022; 288: 121690. https://doi.org/10.1016/j.biomaterials.2022.121690
  5. Guleria G., Thakur S., Shandilya M., Sharma S., Thakur S., Kalia S. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant. Physiol. Biochem. 2023; 194: 533–49. https://doi.org/10.1016/j.plaphy.2022.12.004
  6. Cho W.S., Duffin R., Poland C.A., Duschl A., Oostingh G.J., Macnee W., et al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 2012; 6(1): 22–35. https://doi.org/10.3109/17435390.2011.552810
  7. Cronholm P., Karlsson H.L., Hedberg J., Lowe T.A., Winnberg L., Elihn K., et al. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small. 2013; 9(7): 970–82. https://doi.org/10.1002/smll.201201069
  8. Government of Canada. Emissions of harmful substances to air 1990-2000. Available at: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/emissions-harmful-substances-air.html
  9. Aitken R.J., Creely K.S., Tran C.L. Nanoparticle: An Occupational Hygiene Review. Edinburg; 2004. Available at: https://hse.gov.uk/research/rrpdf/rr274.pdf
  10. Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2020 году». М.; 2021. [The State report «On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2020». Moscow; 2021. (in Russian)]
  11. Gorbunov B., Priest N.D., Muir R.B., Jackson P.R., Gnewuch H. A novel size-selective airborne particle size fractionating instrument for health risk evaluation. Ann. Occup. Hyg. 2009; 53(3): 225–37. https://doi.org/10.1007/978-1-4020-9491-0_17
  12. Cena L.G., Chisholm W.P., Keane M.J., Chen B.T. A field study on the respiratory deposition of the nano-sized fraction of mild and stainless-steel welding fume metals. J. Occup. Environ. Hyg. 2015; 12(10): 721–8. https://doi.org/10.1080/15459624.2015.1043055
  13. Gupta R., Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 2018; 37(3): 209–30. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
  14. Maher B.A., Ahmed I.A, Karloukovski V., MacLaren D.A., Foulds P.G., Allsop D., et al. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. U. S. A. 2016; 113(39): 10797–801. https://doi.org/10.1073/pnas.1605941113
  15. Calderón-Garcidueñas L., González-Maciel A., Reynoso-Robles R., Rodríguez-López J.L., Silva-Pereyra H.G., Labrada-Delgado G.J., et al. Environmental Fe, Ti, Al, Cu, Hg, Bi, and Si nanoparticles in the atrioventricular conduction axis and the associated ultrastructural damage in young urbanites: cardiac arrhythmias caused by anthropogenic, industrial, E-Waste, and indoor nanoparticles. Environ. Sci. Technol. 202115; 55(12): 8203–14. https://doi.org/10.1021/acs.est.1c01733
  16. Khorsandi L., Mansouri E., Orazizadeh M., Jozi Z. Curcumin attenuates hepatotoxicity induced by zinc oxide nanoparticles in rats. Balkan. Med. J. 2016; 33(3): 252–7. https://doi.org/10.5152/balkanmedj.2016.150017
  17. Karimi S., Khorsandi L., Nejaddehbashi F. Protective effects of Curcumin on testicular toxicity induced by titanium dioxide nanoparticles in mice. JBRA Assist Reprod. 2019; 23(4): 344–51. https://doi.org/10.5935/1518-0557.20190031
  18. Heidai-Moghadam A., Khorsandi L., Jozi Z. Curcumin attenuates nephrotoxicity induced by zinc oxide nanoparticles in rats. Environ. Sci. Pollut. Res. Int. 2019; 26(1): 179–87. https://doi.org/10.1007/s11356-018-3514-9
  19. Elkhateeb S.A., Ibrahim T.R., El-Shal A.S., Abdel Hamid O.I. Ameliorative role of curcumin on copper oxide nanoparticles-mediated renal toxicity in rats: An investigation of molecular mechanisms. J. Biochem. Mol. Toxicol. 2020; 34(12): e22593. https://doi.org/10.1002/jbt.22593
  20. Shirdare M., Jabbari F., Salehzadeh M., Ziamajidi N., Nourian A., Heidarisasan S., et al. Curcuma reduces kidney and liver damage induced by titanium dioxide nanoparticles in male Wistar rats. Avicenna. J. Phytomed. 2022; 12(5): 537–47. https://doi.org/10.22038/AJP.2021.53346.2727
  21. Alghriany A.A.I., Omar H.E.M., Mahmoud A.M., Atia M.M. Assessment of the toxicity of aluminum oxide and its nanoparticles in the bone marrow and liver of male mice: ameliorative efficacy of curcumin nanoparticles. ACS Omega. 2022; 7(16): 13841–52. https://doi.org/10.1021/acsomega.2c00195
  22. Biswas J., Sinha D., Mukherjee S., Roy S., Siddiqi M., Roy M. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Hum. Exp. Toxicol. 2010; 29(6): 513–24. https://doi.org/10.1177/0960327109359020
  23. Altwaijry N., El-Masry T.A., Alotaibi B., Tousson E., Saleh A. Therapeutic effects of rocket seeds (Eruca sativa L.) against testicular toxicity and oxidative stress caused by silver nanoparticles injection in rats. Environ. Toxicol. 2020; 35(9): 952–60. https://doi.org/10.1002/tox.22931
  24. Alotaibi B., El-Masry T.A., Tousson E., Alarfaj S.J., Saleh A. Therapeutic effect of rocket seeds (Eruca sativa L.) against hydroxyapatite nanoparticles injection induced cardiac toxicity in rats. Pak. J. Pharm. Sci. 2020; 33(4): 1839–45.
  25. Soliman H.A.M., Hamed M., Sayed A.E.H. Investigating the effects of copper sulfate and copper oxide nanoparticles in Nile tilapia (Oreochromis niloticus) using multiple biomarkers: the prophylactic role of Spirulina. Environ. Sci. Pollut. Res. Int. 2021; 28(23): 30046–57. https://doi.org/10.1007/s11356-021-12859-0
  26. Mawed S.A., Centoducati G., Farag M.R., Alagawany M., Abou-Zeid S.M., Elhady W.M., et al. Dunaliella salina microalga restores the metabolic equilibrium and ameliorates the hepatic inflammatory response induced by zinc oxide nanoparticles (ZnO-NPs) in male zebrafish. Biology (Basel). 2022; 11(10): 1447. https://doi.org/10.3390/biology11101447
  27. El-Bestawy E.M., Tolba A.M. Effects of titanium dioxide nanoparticles on the myocardium of the adult albino rats and the protective role of β-carotene (histological, immunohistochemical and ultrastructural study). J. Mol. Histol. 2020; 51(5): 485–501. https://doi.org/10.1007/s10735-020-09897-2
  28. Orazizadeh M., Khorsandi L., Absalan F., Hashemitabar M., Daneshi E. Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. J. Assist. Reprod. Genet. 2014; 31(5): 561–8. https://doi.org/10.1007/s10815-014-0184-5
  29. Meng X., Li L., An H., Deng Y., Ling C., Lu T., et al. Lycopene alleviates titanium dioxide nanoparticle-induced testicular toxicity by inhibiting oxidative stress and apoptosis in mice. Biol. Trace Elem. Res. 2022; 200(6): 2825–37. https://doi.org/10.1007/s12011-021-02881-1
  30. Mohamed Mowafy S., Awad Hegazy A., Mandour D.A., Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol. 2021; 45(4-5): 307–18. https://doi.org/10.1080/01913123.2021.1970660
  31. Tohamy H.G., Lebda M.A., Sadek K.M., Elfeky M.S., El-Sayed Y.S., Samak D.H., et al. Biochemical, molecular and cytological impacts of alpha-lipoic acid and Ginkgo biloba in ameliorating testicular dysfunctions induced by silver nanoparticles in rats. Environ. Sci. Pollut. Res. Int. 2022; 29(25): 38198–211. https://doi.org/10.1007/s11356-021-18441-y
  32. Abd El-Maksoud E.M., Lebda M.A., Hashem A.E., Taha N.M., Kamel M.A. Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environ. Sci. Pollut. Res. Int. 2019; 26(25): 25844–54. https://doi.org/10.1007/s11356-019-05835-2
  33. Lebda M.A., Sadek K.M., Tohamy H.G., Abouzed T.K., Shukry M., Umezawa M., et al. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci. 2018; 212: 251–60. https://doi.org/10.1016/j.lfs.2018.10.011
  34. El-Masry T.A., Altwaijry N., Alotaibi B., Tousson E., Alboghdadly A., Saleh A. Chicory (Cichorium intybus L.) extract ameliorates hydroxyapatite nanoparticles induced kidney damage in rats. Pak. J. Pharm. Sci. 2020; 33(3): 1251–60 https://doi.org/10.36721/PJPS.2020.33.3.SUP.1251-1260.1
  35. Iqbal S., Jabeen F., Peng C., Ijaz M.U., Chaudhry A.S. Cinnamomum cassia ameliorates Ni-NPs-induced liver and kidney damage in male Sprague Dawley rats. Hum. Exp. Toxicol. 2020; 39(11): 1565–81. https://doi.org/10.1177/0960327120930125
  36. Noureen A., Jabeen F., Tabish T.A., Zahoor M.K., Ali M., Iqbal R., et al. Ameliorative effects of Moringa oleifera on copper nanoparticle induced toxicity in Cyprinus carpio assessed by histology and oxidative stress markers. Nanotechnology. 2018; 29(46): 464003. https://doi.org/10.1088/1361-6528/aade23
  37. Kandeil M.A., Mohammed E.T., Hashem K.S., Aleya L., Abdel-Daim M.M. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ. Sci. Pollut. Res. Int. 2020; 27(16): 19169–84. https://doi.org/10.1007/s11356-019-05514-2
  38. Abdou K.H., Moselhy W.A., Mohamed H.M., El-Nahass E.S., Khalifa A.G. Moringa oleifera leaves extract protects titanium dioxide nanoparticles-induced nephrotoxicity via Nrf2/HO-1 signaling and amelioration of oxidative stress. Biol. Trace Elem. Res. 2019; 187(1): 181–91. https://doi.org/10.1007/s12011-018-1366-2
  39. Noureen A., De Marco G., Rehman N., Jabeen F., Cappello T. Ameliorative hematological and histomorphological effects of dietary trigonella foenum-graecum seeds in common carp (Cyprinus carpio) exposed to copper oxide nanoparticles. Int. J. Environ. Res. Public Health. 2022; 19(20): 13462. https://doi.org/10.3390/ijerph192013462
  40. Vineetha V.P., Devika P., Prasitha K., Anilkumar T.V. Tinospora cordifolia ameliorated titanium dioxide nanoparticle-induced toxicity via regulating oxidative stress-activated MAPK and NRF2/Keap1 signaling pathways in Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2021; 240: 108908. https://doi.org/10.1016/j.cbpc.2020.108908
  41. Mohammed E.T., Safwat G.M. Grape seed proanthocyanidin extract mitigates titanium dioxide nanoparticle (TiO2-NPs)-induced hepatotoxicity through TLR-4/NF-κB signaling pathway. Biol. Trace Elem. Res. 2020; 196(2): 579–89. https://doi.org/10.1007/s12011-019-01955-5
  42. Ali S.A., Arafa A.F., Aly H.F, Ibrahim N.A., Kadry M.O., Abdel-Megeed R.M., et al. DNA damage and genetic aberration induced via different sized silver nanoparticles: Therapeutic approaches of Casimiroa edulis and Glycosmis pentaphylla leaves extracts. J. Food Biochem. 2020; 4: e13398. https://doi.org/10.1111/jfbc.13398
  43. Abdel-Megeed R.M., Ali S.A., Khalil W.B., Refaat E.A., Kadry M.O. Mitigation of apoptosis-mediated neurotoxicity induced by silver nanoparticles via rutaceae nutraceuticals: P53 activation and Bax/Bcl-2 regulation. Toxicol. Rep. 2022; 9: 2055–63. https://doi.org/10.1016/j.toxrep.2022.11.009
  44. Ibrahim M.A., Khalaf A.A., Galal M.K., Ogaly H.A., Hassan A.H.M. Ameliorative influence of green tea extract on copper nanoparticle-induced hepatotoxicity in rats. Nanoscale Res. Lett. 2015; 10(1): 363. https://doi.org/10.1186/s11671-015-1068-z
  45. Abd El-Aziz Y.M., Hendam B.M., Al-Salmi F.A., Qahl S.H., Althubaiti E.H., Elsaid F.G., et al. Ameliorative effect of pomegranate peel extract (PPE) on hepatotoxicity prompted by iron oxide nanoparticles (Fe2O3-NPs) in mice. Nanomaterials (Basel). 2022; 12(17): 3074. https://doi.org/10.3390/nano12173074
  46. Abdel-Wahhab M.A., El-Nekeety A.A., Mohammed H.E., Elshafey O.I., Abdel-Aziem S.H., Hassan N.S. Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil. Environ. Sci. Pollut. Res. Int. 2021; 28(41): 57640–56. https://doi.org/10.1007/s11356-021-14723-7
  47. Sallam M.F., Ahmed H.M.S., Diab K.A., El-Nekeety A.A., Abdel-Aziem S.H., Sharaf H.A., et al. Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J. Trace Elem. Med. Biol. 2022; 73: 127024. https://doi.org/10.1016/j.jtemb.2022.127024
  48. Hassan M.E., Hassan R.R., Diab K.A., El-Nekeety A.A., Hassan N.S., Abdel-Wahhab M.A. Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats. Environ. Sci. Pollut. Res. Int. 2021; 28(37): 52046–63. https://doi.org/10.1007/s11356-021-14427-y
  49. Salman A.S., Al-Shaikh T.M., Hamza Z.K., El-Nekeety A.A., Bawazir S.S., Hassan N.S., et al. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. Environ. Sci. Pollut. Res. Int. 2021; 28(29): 39035–51. https://doi.org/10.1007/s11356-021-13518-0
  50. Said A.A., Nasr Y., Galal A.A.A., Abdelhamid A.E., Mohamed H.A., Metwally M.M.M., et al. Concerns with male infertility induced by exposure to titanium nanoparticles and the supporting impact of pelargonium graveolens essential oil: morphometric records in male-wistar rats. Life (Basel). 2022; 12(5): 639. https://doi.org/10.3390/life12050639
  51. Sallam M.F., Ahmed H.M.S., El-Nekeety A.A., Diab K.A., Abdel-Aziem S.H., Sharaf H.A., et al. Assessment of the oxidative damage and genotoxicity of titanium dioxide nanoparticles and exploring the protective role of holy basil oil nanoemulsions in rats. Biol. Trace Elem. Res. 2023; 201(3): 1301–16. https://doi.org/10.1007/s12011-022-03228-0
  52. El-Nekeety A.A., Hassan M.E., Hassan R.R., Elshafey O.I., Hamza Z.K., Abdel-Aziem S.H., et al. Nanoencapsulation of basil essential oil alleviates the oxidative stress, genotoxicity and DNA damage in rats exposed to biosynthesized iron nanoparticles. Heliyon. 2021; 7(7): e07537. https://doi.org/10.1016/j.heliyon.2021.e07537
  53. Cui Y., Che Y., Wang H. Nono-titanium dioxide exposure during the adolescent period induces neurotoxicities in rats: Ameliorative potential of bergamot essential oil. Brain Behav. 2021; 11(5): e02099. https://doi.org/10.1002/brb3.2099
  54. Hassanen E.I., Tohamy A.F., Issa M.Y., Ibrahim M.A., Farroh K.Y., Hassan A.M. Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int. J. Nanomedicine. 2019; 14: 8905–22. https://doi.org/10.2147/IJN.S229461
  55. Hassanen E.I., Ibrahim M.A., Hassan A.M., Mehanna S., Aljuaydi S.H., Issa M.Y. Neuropathological and cognitive effects induced by CuO-NPs in rats and trials for prevention using pomegranate juice. Neurochem. Res. 2021; 46(5): 1264–79. https://doi.org/10.1007/s11064-021-03264-7
  56. Abd El-Ghffar E.A., Hegazi N.M., Saad H.H., Soliman M.M., El-Raey M.A., Shehata S.M., et al. HPLC-ESI- MS/MS analysis of beet (Beta vulgaris) leaves and its beneficial properties in type 1 diabetic rats. Biomed. Pharmacother. 2019; 120: 109541. https://doi.org/10.1016/j.biopha.2019.109541
  57. Albrahim T., Alonazi M.A. Role of beetroot (Beta vulgaris) juice on chronic nanotoxicity of silver nanoparticle-induced hepatotoxicity in male rats. Int. J. Nanomedicine. 2020; 15: 3471–82. https://doi.org/10.2147/IJN.S248078
  58. Albrahim T. Silver nanoparticles-induced nephrotoxicity in rats: the protective role of red beetroot (Beta vulgaris) juice. Environ. Sci. Pollut. Res. Int. 2020; 27(31): 38871–80. https://doi.org/10.1007/s11356-020-09671-7
  59. Elmasry T., Altwaijry N., Alotaibi B., Tousson E., Saleh A., Alboghdadly A.M. Chicory (Cichorium intybus L.) extract ameliorates hydroxyapatite nanoparticles induced kidney damage in rats. Pak. J. Pharm. Sci. 2020; 33(3): 1251–60. https://doi.org/10.36721/PJPS.2020.33.3.SUP.1251-1260.1
  60. Fadda L.M., Mohamed A.M., Ali H.M., Hagar H., Aldossari M. Prophylactic administration of carnosine and melatonin abates the incidence of renal toxicity induced by an over dose of titanium dioxide nanoparticles. J. Biochem. Mol. Toxicol. 2018; 32(3): e22040. https://doi.org/10.1002/jbt.22040
  61. Shahin N.N., Mohamed M.M. Nano-sized titanium dioxide toxicity in rat prostate and testis: Possible ameliorative effect of morin. Toxicol. Appl. Pharmacol. 2017; 334: 129–41. https://doi.org/10.1016/j.taap.2017.08.014
  62. Hussein M.M.A., Gad E., Ahmed M.M., Arisha A.H., Mahdy H.F., Swelum A.A., et al. Amelioration of titanium dioxide nanoparticle reprotoxicity by the antioxidants morin and rutin. Environ. Sci. Pollut. Res. Int. 2019; 26(28): 29074–84. https://doi.org/10.1007/s11356-019-06091-0
  63. Arisha A.H., Ahmed M.M., Kamel M.A., Attia Y.A., Hussein M.M.A. Morin ameliorates the testicular apoptosis, oxidative stress, and impact on blood-testis barrier induced by photo-extracellularly synthesized silver nanoparticles. Environ. Sci. Pollut. Res. Int. 2019; 26(28): 28749–62. https://doi.org/10.1007/s11356-019-06066-1
  64. Yousef H.N., Ibraheim S.S., Ramadan R.A., Aboelwafa H.R. The ameliorative role of eugenol against silver nanoparticles-induced hepatotoxicity in male Wistar rats. Oxid. Med. Cell Longev. 2022; 2022: 3820848. https://doi.org/10.1155/2022/3820848
  65. Aboelwafa H.R., Ramadan R.A., Ibraheim S.S., Yousef H.N. Modulation effects of eugenol on nephrotoxicity triggered by silver nanoparticles in adult rats. Biology (Basel). 2022; 11(12): 1719. https://doi.org/10.3390/biology11121719
  66. Wani M.R., Maheshwari N., Shadab G. Eugenol attenuates TiO2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. Environ. Sci. Pollut. Res. Int. 2021; 28(18): 22664–78. https://doi.org/10.1007/s11356-020-12139-3
  67. Hassanein K.M.A., El-Amir Y.O. Ameliorative effects of thymoquinone on titanium dioxide nanoparticles induced acute toxicity in rats. Int. J. Vet. Sci. Med. 2018; 6(1): 16–21. https://doi.org/10.1016/j.ijvsm.2018.02.002
  68. Hassanein K.M., El-Amir Y.O. Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague-Dawley rats. Pathol. Res. Pract. 2017; 213(1): 13–22. https://doi.org/10.1016/j.prp.2016.08.002
  69. Jafari A., Rasmi Y., Hajaghazadeh M., Karimipour M. Hepatoprotective effect of thymol against subchronic toxicity of titanium dioxide nanoparticles: Biochemical and histological evidences. Environ. Toxicol. Pharmacol. 2018; 58: 29–36. https://doi.org/10.1016/j.etap.2017.12.010
  70. Chen R.J., Huang C.C., Pranata R., Lee Y.H., Chen Y.Y., Wu Y.H., et al. Modulation of innate immune toxicity by silver nanoparticle exposure and the preventive effects of pterostilbene. Int. J. Mol. Sci. 2021; 22(5): 2536. https://doi.org/10.3390/ijms22052536
  71. Song W.J., Kim J., Shin T., Jeong M.S., Kim K.N., Yun J.H., et al. Esculetin and fucoidan attenuate autophagy and apoptosis induced by zinc oxide nanoparticles through modulating reactive astrocyte and proinflammatory cytokines in the rat brain. Toxics. 2022; 10(4): 194. https://doi.org/10.3390/toxics10040194
  72. Halawa A.A., Elshopakey G.E., Elmetwally M.A., El-Adl M., Lashen S., Shalaby N., et al. Impact of chitosan administration on titanium dioxide nanoparticles induced testicular dysfunction. Sci. Rep. 2022; 12(1): 19667. https://doi.org/10.1038/s41598-022-22044-z
  73. Bakour M., Hammas N., Laaroussi H., Ousaaid D., Fatemi H.E., Aboulghazi A., et al. Moroccan bee bread improves biochemical and histological changes of the brain, liver, and kidneys induced by titanium dioxide nanoparticles. Biomed. Res. Int. 2021; 2021: 6632128. https://doi.org/10.1155/2021/6632128
  74. Hamza R.Z., Al-Eisa R.A., El-Shenawy N.S. Possible ameliorative effects of the royal jelly on hepatotoxicity and oxidative stress induced by molybdenum nanoparticles and/or cadmium chloride in male rats. Biology (Basel). 2022; 11(3): 450. https://doi.org/10.3390/biology11030450
  75. Abdel-Wahhab M.A., El-Nekeety A.A., Mohammed H.E., El-Messery T.M., Roby M.H., Abdel-Aziem S.H., et al. Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon. 2021; 7(11): e08456. https://doi.org/10.1016/j.heliyon.2021.e08456

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Ryabova Y.V., Shabardina L.V., Minigalieva I.A., Sutunkova M.P., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.