Microbial risks associated with microplastics in the food chain and possible control measures (literature review). Part 1. Dietary intake and influence on the gut microbiota
- Authors: Sheveleva S.A.1, Markova Y.M.1, Efimochkina N.R.1, Minaeva L.P.1, Bykova I.B.1, Zinurova E.E.1, Smotrina Y.V.1, Polyanina A.S.1, Stetsenko V.V.1, Khotimchenko S.A.1
-
Affiliations:
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
- Issue: Vol 102, No 12 (2023)
- Pages: 1334-1347
- Section: FOOD HYGIENE
- Published: 31.12.2023
- URL: https://ruspoj.com/0016-9900/article/view/638284
- DOI: https://doi.org/10.47470/0016-9900-2023-102-12-1334-1347
- EDN: https://elibrary.ru/ilsoii
- ID: 638284
Cite item
Full Text
Abstract
Environmental contamination by polymer wastes and microplastics (MPs) has recently become important for health care, due to the emergence of a lot of evidence that MPs affect the health of living organisms, including humans.
MPs commonly presented in drinking water and various groups of food products, and are found in human stool, colon tissue, and blood samples. When MPs are orally ingested, the first object for their interaction with the organism is the gastrointestinal microbiota. Considering the essential importance of the intestinal microbiota for human health, the study of the negative consequences of such contact becomes very important.
The results of “in vitro” and “in vivo” experimental studies summarized in the review indicate MPs to have negative effects on the microbial community composition and of the intestinal barrier state, and are themselves subject to microbial degradation in the gastrointestinal tract. “In vivo” studies, the entry of MPs into the intestine is accompanied by an increase in α-diversity of the microbiota, presumably due to foreign microorganisms attached to the particles, including those in as part of biofilms formed on their surfaces.
Competing with representatives of normal intestinal flora, these microorganisms are able to enzymatically degrade or overcome the mucosal barrier. Simultaneously the biofilm matrix associate with intestinal mucus and provides MPs particles with retention in the mucin layer and direct contact with the apical part of epitheliocytes. This leads to irritation, local inflammation, and damage to the intestinal barrier.
MPs and their biotransformation products can also systemically affect the host organism, translocating from the intestine into the bloodstream.
The review emphasizes that to identify and characterize the health risks associated with the intake of various MPs from food, studies assessing their interaction with the microbiota and biotransformation pathways in the intestine are necessary.
Contribution:
Sheveleva S.A., Markova Yu.M. — writing and editing of the text;
Khotimchenko S.A. — editing of the text;
Efimochkina N.R., Minaeva L.P., Bykova I.B., Zinurova E.E., Smotrina Yu.V., Polyanina A.S., Stetsenko V.V. — data collection and analysis.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. This work was carried out within the framework of the Program of Fundamental Scientific Research project of the Ministry of science and higher education of the Russian Federation No FGMF-2023-0005.
Received: November 11, 2023 / Accepted: November 15, 2023 / Published: December 28, 2023
About the authors
Svetlana A. Sheveleva
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Author for correspondence.
Email: sheveleva@ion.ru
ORCID iD: 0000-0001-5647-9709
Д.м.н., заведующая лабораторией биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
e-mail: sheveleva@ion.ru
Russian FederationYulia M. Markova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: yulia.markova.ion@gmail.com
ORCID iD: 0000-0002-2631-6412
Senior researcher, Laboratory of biosafety and analysis of nutrimicrobiome, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation
e-mail: yulia.markova.ion@gmail.com
Russian FederationNatalya R. Efimochkina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0002-9071-0326
Д.б.н., ведущий научный сотрудник лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationLyudmila P. Minaeva
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0003-1853-5735
К.т.н., ведущий научный сотрудник лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationIrina B. Bykova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0001-7288-312X
Научный сотрудник лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationElena E. Zinurova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6639-2524
К.б.н., старший научный сотрудник лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationYulia V. Smotrina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0001-8842-0525
Младший научный сотрудник. лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationAnna S. Polyanina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0002-2766-7716
Младший научный сотрудник лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationValentina V. Stetsenko
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0001-6470-171X
Научный сотрудник лаборатории биобезопасности и анализа нутримикробиома ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationSergey A. Khotimchenko
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
ORCID iD: 0000-0002-5340-9649
Д.м.н., член-корреспондент РАН, профессор, заведующий лабораторией пищевой токсикологии и оценки безопасности нанотехнологий ФГБУН «ФИЦ питания и биотехнологии», 109240, г. Москва, Россия
Russian FederationReferences
- Sheng C., Zhang S., Zhang Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J. Hazard. Mater. 2021; 402: 123733. https://doi.org/10.1016/j.jhazmat.2020.123733
- Catarino A.I., Kramm J., Völker C., Henry T.B., Everaert G. Risk posed by microplastics: Scientific evidence and public perception. Curr. Opin. Green Sustain. Chem. 2021; 29: 100467. https://doi.org/10.1016/j.cogsc.2021.100467
- WHO. Microplastics in drinking-water; 2018. Available at: https://iris.who.int/bitstream/handle/10665/326499/9789241516198-eng.pdf
- Nguyen B., Claveau-Mallet D., Hernandez L.M., Xu E.G., Farner J.M., Tufenkji N. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 2019; 52(4): 858–66. https://doi.org/10.1021/acs.accounts.8b00602
- Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 2018; 9: 898. https://doi.org/10.3389/fmicb.2018.00898
- Zettler E.R., Mincer T.J., Amaral-Zettler L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013; 47(13): 7137–46. https://doi.org/10.1021/es401288x
- Haram L.E., Carlton J.T., Centurioni L., Choong H., Cornwell B., Crowley M., et al. Extent and reproduction of coastal species on plastic debris in the North Pacific Subtropical Gyre. Nat. Ecol. Evol. 2023; 7(5): 687–97. https://doi.org/10.1038/s41559-023-01997-y
- Tavelli R., Callens M., Grootaert C., Abdallah M.F., Rajkovic A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends in Food Sci. Technol. 2022; 129: 1–10. https://doi.org/10.1016/j.tifs.2022.08.021
- Hartmann N.B., Hüffer T., Thompson R.C., Hassellöv M., Verschoor A., Daugaard A.E., et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019; 53(3): 1039–47. https://doi.org/10.1021/acs.est.8b05297
- The European Chemicals Agency. Annex XV restriction report – proposal for a restriction; substance name(s): Intentionally added microplastics. ECHA; 2019. Available at: https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720
- Hahladakis J.N., Velis C.A., Weber R., Iacovidou E., Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018; 344: 179–99. https://doi.org/10.1016/j.jhazmat.2017.10.014
- Skåre J.U., Alexander J., Haave M., Jakubowicz I., Knutsen H.K., Lusher A., et al. Microplastics; occurrence, levels and implications for environment and human health related to food. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment. Oslo: Norwegian Scientific Committee for Food and Environment (VKM); 2019. Available at: https://norceresearch.brage.unit.no/norceresearch-xmlui/bitstream/handle/11250/2648641/Sk%C3%A5re_2019_Mic.pdf?sequence=1
- Toussaint B., Raffael B., Angers-Loustau A., Gilliland D., Kestens V., Petrillo M., et. al. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019; 36(5): 639–73. https://doi.org/10.1080/19440049.2019.1583381
- Barboza L.G.A., Dick Vethaak A., Lavorante B.R.B.O., Lundebye A.K., Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018; 133: 336–48. https://doi.org/10.1016/j.marpolbul.2018.05.047
- Lusher A., Hollman P.C.H., Mendoza-Hill J. FAO Fisheries and Aquaculture Technical Paper No. 615. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. Rome; 2017. Available at: https://www.fao.org/3/I7677E/I7677E.pdf
- Geueke B. FPF Dossier: Microplastics; 2020. https://doi.org/10.5281/zenodo.3725591
- Oßmann B.E., Sarau G., Holtmannspötter H., Pischetsrieder M., Christiansen S.H., Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018; 141: 307–16. https://doi.org/10.1016/j.watres.2018.05.027
- Schymanski D., Goldbeck C., Humpf H.U., Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018; 129: 154–62. https://doi.org/10.1016/j.watres.2017.11.011
- Zhurina M.V., Bogdanov K.I., Gannesen A.V., Mart’yanov S.V., Plakunov V.K. Microplastics as a new ecological niche for multispecies microbial biofilms within the plastisphere. Mikrobiologiya. 2022; 91(2): 131–49. https://doi.org/10.1134/S0026261722020126 https://elibrary.ru/ceqxso (in Russian)
- Kutralam-Muniasamy G., Pérez-Guevara F., Elizalde-Martínez I., Shruti V.C. Branded milks – Are they immune from microplastics contamination? Sci. Total. Environ. 2020; 714: 136823. https://doi.org/10.1016/j.scitotenv.2020.136823
- Cox K.D., Covernton G.A., Davies H.L., Dower J.F., Juanes F., Dudas S.E. Human consumption of microplastics. Environ. Sci. Technol. 2019; 53(12): 7068–74. https://doi.org/10.1021/acs.est.9b01517
- Mohamed Nor N.H., Kooi M., Diepens N.J., Koelmans A.A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol. 2021; 55(8): 5084–96. https://doi.org/10.1021/acs.est.0c07384
- Li D., Shi Y., Yang L., Xiao L., Kehoe D.K., Gun’ko Y.K., et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food. 2020; 1(11): 746–54. https://doi.org/10.1038/s43016-020-00171-y
- Zhou G., Wu Q., Tang P., Chen C., Cheng X., Wei X.F., et al. How many microplastics do we ingest when using disposable drink cups? J. Hazard. Mater. 2023; 441: 129982. https://doi.org/10.1016/j.jhazmat.2022.129982
- Bai C.L., Liu L.Y., Hu Y.B., Zeng E.Y., Guo Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci. Total. Environ. 2022; 806(Pt. 1): 150263. https://doi.org/10.1016/j.scitotenv.2021.150263
- Sripada K., Wierzbicka A., Abass K., Grimalt J.O., Erbe A., Röllin H.B., et al. A children’s health perspective on nano- and microplastics. Environ. Health Perspect. 2022; 130(1): 15001. https://doi.org/10.1289/EHP9086
- Revel M., Châtel A., Mouneyrac C. Micro(nano)plastics: A threat to human health? Curr. Opin. Env. Sci. Health. 2018; 1: 17–23. https://doi.org/10.1016/j.coesh.2017.10.003
- Schwabl P., Köppel S., Königshofer P., Bucsics T., Trauner M., Reiberger T., et al. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 2019; 171(7): 453–7. https://doi.org/10.7326/M19-0618
- Zhang J., Wang L., Trasande L., Kannan K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ. Sci. Technol. Letters. 2021; 8(11): 989–94. https://doi.org/10.1021/acs.estlett.1c00559
- Zhang N., Li Y.B., He H.R., Zhang J.F., Ma G.S. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci. Total. Environ. 2021; 767: 144345. https://doi.org/10.1016/j.scitotenv.2020.144345
- Luqman A., Nugrahapraja H., Wahyuono R.A., Islami I., Haekal M.H., Fardiansyah Y., et al. Microplastic contamination in human stools, foods, and drinking water associated with Indonesian coastal population. Environments. 2021; 8(12): 138. https://doi.org/10.3390/environments8120138
- Wibowo A.T., Nugrahapraja H., Wahyuono R.A., Islami I., Haekal M.H., Fardiansyah Y., et al. Microplastic contamination in the human gastrointestinal tract and daily consumables associated with an Indonesian farming community. Sustainability. 2021; 13(22): 12840. https://doi.org/10.3390/su132212840
- Yan Z., Liu Y., Zhang T., Zhang F., Ren H., Zhang Y. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol. 2022; 56(1): 414–21. https://doi.org/10.1021/acs.est.1c03924
- Ho Y.W., Lim J.Y., Yeoh Y.K., Chiou J.C., Zhu Y., Lai K.P., et. al. Preliminary findings of the high quantity of microplastics in faeces of Hong Kong residents. Toxics. 2022; 10(8): 414. https://doi.org/10.3390/toxics10080414
- Ibrahim Y.S., Tuan Anuar S., Azmi A.A., Wan Mohd Khalik W.M.A., Lehata S., Hamzah S.R., et al. Detection of microplastics in human colectomy specimens. JGH Open. 2020; 5(1): 116–21. https://doi.org/10.1002/jgh3.12457
- Leslie H.A., van Velzen M.J.M., Brandsma S.H., Vethaak A.D., Garcia-Vallejo J.J., Lamoree M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022; 163: 107199. https://doi.org/10.1016/j.envint.2022.107199
- Guan Q., Jiang J., Huang Y., Wang Q., Liu Z., Ma X., et al. The landscape of micron-scale particles including microplastics in human enclosed body fluids. J. Hazard. Mater. 2023; 442: 130138. https://doi.org/10.1016/j.jhazmat.2022.130138
- Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021; 146: 106274. https://doi.org/10.1016/j.envint.2020.106274
- Braun T., Ehrlich L., Henrich W., Koeppel S., Lomako I., Schwabl P., et al. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics. 2021; 13(7): 921. https://doi.org/10.3390/pharmaceutics13070921
- Prata J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018; 234: 115–26. https://doi.org/10.1016/j.envpol.2017.11.043
- Wright S.L., Kelly F.J. Plastic and human health: a micro issue? Environ. Sci. Technol. 2017; 51(12): 6634–47. https://doi.org/10.1021/acs.est.7b00423
- Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total. Environ. 2020; 702: 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
- Rist S., Carney Almroth B., Hartmann N.B., Karlsson T.M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total. Environ. 2018; 626: 720–6. https://doi.org/10.1016/j.scitotenv.2018.01.092
- Hu N., Zhang X., Yu Z., Du Y., He X., Wang H., et al. Effects of oral exposure to leachate from boiled-water treated plastic products on gut microbiome and metabolomics. J. Hazard Mater. 2022; 439: 129605. https://doi.org/10.1016/j.jhazmat.2022.129605
- Fournier E., Ratel J., Denis S., Leveque M., Ruiz P., Mazal C., et al. Exposure to polyethylene microplastics alters immature gut microbiome in an infant in vitro gut model. J. Hazard Mater. 2023; 443(Pt. B): 130383. https://doi.org/10.1016/j.jhazmat.2022.130383
- Didenko L.V., Sadretdinova O.V., Shevlyagina N.V., Avtandilov G.A., Novokshonova I.V., Karpova T.I., et al. Morphological features of biofilms in potentially dangerous water systems. Epidemiologiya i infektsionnye bolezni. 2012; (1): 15–20. https://elibrary.ru/pfrczf (in Russian)
- Fackelmann G., Pham C.K., Rodríguez Y., Mallory M.L., Provencher J.F., Baak J.E., et al. Current levels of microplastic pollution impact wild seabird gut microbiomes. Nat. Ecol. Evol. 2023; 7(5): 698–706. https://doi.org/10.1038/s41559-023-02013-z
- Zha H., Lv J., Lou Y., Wo W., Xia J., Li S., et al. Alterations of gut and oral microbiota in the individuals consuming take-away food in disposable plastic containers. J. Hazard. Mater. 2023; 441: 129903. https://doi.org/10.1016/j.jhazmat.2022.129903
- Garrido Gamarro E., Costanzo V. Microplastics in food commodities – A food safety review on human exposure through dietary sources. Food Safety and Quality Series No. 18. Rome: FAO; 2022. https://doi.org/10.4060/cc2392en
- Turroni S., Wright S., Rampelli S., Brigidi P., Zinzani P.L., Candela M. Microplastics shape the ecology of the human gastrointestinal intestinal tract. Curr. Opin. Toxicol. 2021; 28: 32–7. https://doi.org/10.1016/j.cotox.2021.09.006
- Jiménez-Arroyo C., Tamargo A., Molinero N., Moreno-Arribas M.V. The gut microbiota, a key to understanding the health implications of micro(nano)plastics and their biodegradation. Microb. Biotechnol. 2023; 16(1): 34–53. https://doi.org/10.1111/1751-7915.14182
- Chu Q., Zhang S., Yu X., Wang Y., Zhang M., Zheng X. Fecal microbiota transplantation attenuates nano-plastics induced toxicity in Caenorhabditis elegans. Sci. Total. Environ. 2021; 779: 146454. https://doi.org/10.1016/j.scitotenv.2021.146454
- Jin Y., Lu L., Tu W., Luo T., Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total. Environ. 2019; 649: 308–17. https://doi.org/10.1016/j.scitotenv.2018.08.353
- Lu L., Wan Z., Luo T., Fu Z., Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci. Total. Environ. 2018; 631-632: 449–58. https://doi.org/10.1016/j.scitotenv.2018.03.051
- Li B., Ding Y., Cheng X., Sheng D., Xu Z., Rong Q., et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020; 244: 125492. https://doi.org/10.1016/j.chemosphere.2019.125492
- Tamargo A., Cueva C., Alcolea V., Portela R., Banares M.A., Reinosa J.J., et al. Simgi® as an advanced model for the study of the interaction between food-derived microplastics, the human gastrointestinal tract and gut microbiota. In: 25th EFSA Colloquium «A Coordinated Approach to Assess the Human Health Risks of Micro- and Nanoplastics in Food»: Book of abstracts. EFSA; 2021: 68–70. Available at: https://events.efsa.europa.eu/bundles/app/assets/website/css/media/colloquium/doc/book-of-abstracts.pdf#page=68
- Jiménez-Arroyo C., Tamargo A., Molinero N., Reinosa J.J., Alcolea-Rodriguez V., Portela R., et al. Simulated gastrointestinal digestion of polylactic acid (PLA) biodegradable microplastics and their interaction with the gut microbiota. Sci. Total. Environ. 2023; 902: 166003. https://doi.org/10.1016/j.scitotenv.2023.166003
- Tamargo A., Molinero N., Reinosa J.J., Alcolea-Rodriguez V., Portela R., Bañares M.A., et al. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci. Rep. 2022; 12(1): 528. https://doi.org/10.1038/s41598-021-04489-w
- Yan Z., Zhang S., Zhao Y., Yu W., Zhao Y., Zhang Y. Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota. Environ. Pollut. 2022; 310: 119884. https://doi.org/10.1016/j.envpol.2022.119884
- Alomar C., Sureda A., Capó X., Guijarro B., Tejada S., Deudero S. Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress. Environ. Res. 2017; 159: 135–42. https://doi.org/10.1016/j.envres.2017.07.043
- Chiu H.W., Xia T., Lee Y.H., Chen C.W., Tsai J.C., Wang Y.J. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale. 2015; 7(2): 736–46. https://doi.org/10.1039/c4nr05509h
- Liu A., Richards L., Bladen C.L., Ingham E., Fisher J., Tipper J.L. The biological response to nanometre-sized polymer particles. Acta Biomater. 2015; 23: 38–51. https://doi.org/10.1016/j.actbio.2015.05.016
- Hernandez L.M., Xu E.G., Larsson H.C.E., Tahara R., Maisuria V.B., Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 2019; 6353(21): 12300–10. https://doi.org/10.1021/acs.est.9b02540
- Espinosa C., García Beltrán J.M., Esteban M.A., Cuesta A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ. Pollut. 2018; 235: 30–8. https://doi.org/10.1016/j.envpol.2017.12.054
- Lei L., Wu S., Lu S., Liu M., Song Y., Fu Z., et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total. Environ. 2018; 619-620: 1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103
- Zhao N., Zhao M., Jin H. Microplastic-induced gut microbiota and serum metabolic disruption in Sprague-Dawley rats. Environ. Pollut. 2023; 320: 121071. https://doi.org/10.1016/j.envpol.2023.121071
- Qiao J., Chen R., Wang M., Bai R., Cui X., Liu Y., et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale. 2021; 13(19): 8806–16. https://doi.org/10.1039/d1nr00038a
- Xie S., Zhou A., Wei T., Li S., Yang B., Xu G., et al. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics. Bull. Environ. Contam. Toxicol. 2021; 107(4): 640–50. https://doi.org/10.1007/s00128-021-03348-8
- Garcia-Santamarina S., Kuhn M., Devendran S., Maier L., Driessen M., Mateus A., et al. Emergence of community behaviors in the gut microbiota upon drug treatment. bioRxiv. 2023. Preprint. https://doi.org/10.1101/2023.06.13.544832
- Linden S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the mucosal barrier to infection. Mucosal. Immunol. 2008; 1(3): 183–97. https://doi.org/10.1038/mi.2008.5
- Hagi T., Belzer C. The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl. Microbiol. Biotechnol. 2021; 105(12): 4833–41. https://doi.org/10.1007/s00253-021-11362-3
- Crouch L.I., Liberato M.V., Urbanowicz P.A., Baslé A., Lamb C.A., Stewart C.J., et al. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat. Commun. 2020; 11(1): 4017. https://doi.org/10.1038/s41467-020-17847-5
- Paone P., Cani P.D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020; 69(12): 2232–43. https://doi.org/10.1136/gutjnl-2020-322260
- Earle K.A., Billings G., Sigal M., Lichtman J.S., Hansson G.C., Elias J.E., et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe. 2015; 18(4): 478–88. https://doi.org/10.1016/j.chom.2015.09.002
- McGuckin M.A., Lindén S.K., Sutton P., Florin T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 2011; 9(4): 265–78. https://doi.org/10.1038/nrmicro2538
- Lidell M.E., Moncada D.M., Chadee K., Hansson G.C. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc. Natl Acad. Sci. USA. 2006; 103(24): 9298–303. https://doi.org/10.1073/pnas.0600623103
- Hirt N., Body-Malapel M. Effects of nano- and microplastics: a review of the literature. Part. Fibre Toxicol. 2020; 17(1): 57. https://doi.org/10.1186/s12989-020-00387-7
- Zhou Y., Kumar M., Sarsaiya S., Sirohi R., Awasthi S.K., Sindhu R., et al. Challenges and opportunities in bioremediation of micro-nano plastics: A review. Sci. Total. Environ. 2022; 802: 149823. https://doi.org/10.1016/j.scitotenv.2021.149823
- Plakunov V.K., Gannesen A.V., Mart’yanov S.V., Zhurina M.V. Biocorrosion of synthetic plastics: degradation mechanisms and methods of protection. Mikrobiologiya. 2020; 89(6): 631–45. https://doi.org/10.1134/S0026261720060144 https://elibrary.ru/ojxhjv (in Russian)
- Kotova I.B., Taktarova Yu.V., Tsavkelova E.A., Egorova M.A., Bubnov I.A., Malakhova D.V., et al. Microbial degradation of plastics and approaches to make it more efficient. Mikrobiologiya. 2021; 90(6): 627–59. https://doi.org/10.1134/S0026261721060084 https://elibrary.ru/kapthn (in Russian)
- Jang S., Kikuchi Y. Impact of the insect gut microbiota on ecology, evolution, and industry. Curr. Opin. Insect. Sci. 2020; 41: 33–9. https://doi.org/10.1016/j.cois.2020.06.004
- Santos A.L., Rodrigues C.C., Oliveira M., Rocha T.L. Microbiome: A forgotten target of environmental micro(nano)plastics? Sci. Total. Environ. 2022; 822: 153628. https://doi.org/10.1016/j.scitotenv.2022.153628
- Othman A.R., Hasan H.A., Muhamad M.H., Ismail N.I., Abdullah S.R.S. Microbial degradation of microplastics by enzymatic processes: a review. Environ. Chem. Letters. 2021; 19: 3057–73. https://doi.org/10.1007/s10311-021-01197-9
- Devi R.S., Kannan V.R., Natarajan K., Nivas D., Kannan K., Chandru S., et al. The role of microbes in plastic degradation. In: Chandra R., ed. Environmental Waste Management. Boca Raton: CRC Press; 2016: 341–70.
- Carr C.M., Clarke D.J., Dobson A.D.W. Microbial polyethylene terephthalate hydrolases: current and future perspectives. Front. Microbiol. 2020; 11: 571265. https://doi.org/10.3389/fmicb.2020.571265
- Jeon H.J., Kim M.N. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int. Biodeterior. Biodegradation. 2016; 115: 244–9. https://doi.org/10.1016/j.ibiod.2016.08.025
- Aravinthan A., Arkatkar A., Juwarkar A.A., Doble M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep. Biochem. Biotechnol. 2016; 46(2): 109–15. https://doi.org/10.1080/10826068.2014.985836
- Auta H.S., Emenike C.U., Jayanthi B., Fauziah S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018; 127: 15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036
- Zheng X., Zhao A., Xie G., Chi Y., Zhao L., Li H., et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med. 2013; 5(172): 172ra22. https://doi.org/10.1126/scitranslmed.3005114
- Donkers J.M., Höppener E.M., Grigoriev I., Will L., Melgert B.N., van der Zaan B., et al. Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles. Microplast. Nanoplast. 2022; 2(1): 1–18. https://doi.org/10.1186/s43591-021-00024-w
Supplementary files
